Computer Science ›› 2020, Vol. 47 ›› Issue (6A): 310-317.doi: 10.11896/JsJkx.190800073
• Computer Network • Previous Articles Next Articles
CHEN Jin-yin, JIANG Tao and ZHENG Hai-bin
CLC Number:
BAO H,WANG Y,CHEN L.Digital Signal Modulation Recognition Equipment Based on High-order Cumulants//Proceedings of the 11th EAI International Conference on Mobile Multimedia Communications.ICST (Institute for Computer Sciences,Social-Informatics and Telecommunications Engineering),2018:290-297. MINGQUAN L,XIANCI X,LEMING L.Cyclic spectral features based modulation recognition//Proceedings of International Conference on Communication Technology(ICCT’96).IEEE,1996,2:792-795. CAI T,WANG C,CUI G,et al.Constellation-wavelet transform automatic modulation identifier for M-ary QAM signals//2015 IEEE 26th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications (PIMRC).IEEE,2015:212-216. YIN C,LI B,LI Y.Modulation classification of MQAM signals from their constellation using clustering//2010 Second International Conference on Communication Software and Networks.IEEE,2010:303-306. JIA Y U,CHEN Y.Digital modulation recognition method based on BP neural network.Transducer Microsyst,Technol,2012,5(7). PETROVA M,MHNEN P,OSUNA A.Multi-class classification of analog and digital signals in cognitive radios using support vector machines//2010 7th International Symposium on Wireless Communication Systems.IEEE,2010:986-990. O’SHEA T J,CORGAN J,CLANCY T C.Convolutional radio modulation recognition networks//International Conference on Engineering Applications of Neural Networks.Springer,Cham,2016:213-226. WEST N E,O’SHEA T.Deep architectures for modulation recognition//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).IEEE,2017:1-6. ZHANG D W,DONG J,LIU K,et al.Quality Evaluation of Auto-adaptative Frequency-hopping Channel Based on Receiving Signal-to-noise Ratio Prediction.Ship Electronic Engineering,2008(4):76-79. CHANG L L,DAI X H,L Y,et al.Signal-to-Noise Ratio Prediction Method for High Speed Mobile Communication System.Journal of Circuits and Systems,2012,17(1):24-30. CUI L F,CHENG Y C,YANG C,et al.Prediction of Signal-to-Noise Ratio Based on Genetic Optimized BP Neural Network.China New Communications,2016(7):77-77. FEI C L,CHENG Y C,YANG C,et al.Application of Particle Swarm Optimization BP Neural Network in Signal-to-Noise Ratio Prediction.China New Communications,2016(6):44-44. VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion.Journal of Machine Learning Research,2010,11:3371-3408. DESIMIO M P,PRESCOTT G E.Adaptive generation of decision functions for classification of digitally modulated signals//Proceedings of the IEEE 1988 National Aerospace and Electronics Conference.IEEE,1988:1010-1014. GHANI N,LAMONTAGNE R.Neural networks applied to the classification of spectral features for automatic modulation recognition//Proceedings of MILCOM’93-IEEE Military Communications Conference.IEEE,1993:111-115. LOPATKA J,PEDZISZ M.Automatic modulation classification using statistical moments and a fuzzy classifier//WCC 2000-ICSP 2000.2000 5th International Conference on Signal Processing Proceedings.16th World Computer Congress 2000.IEEE,2000:1500-1506. KIM K,POLYDOROS A.Digital modulation classification:the BPSK versus QPSK case//MILCOM 88,21st Century Military Communications-What’s Possible?’. Conference record. Military Communications Conference. IEEE,1988:431-436. GULDEMIR H,SENGUR A.Comparison of clustering algorithms for analog modulation classification.Expert Systems with Applications,2006,30(4):642-649. WONG M L D,NANDI A K.Automatic digital modulation recognition using artificial neural network and genetic algorithm.Signal Processing,2004,84(2):351-365. ZHANG X,GE T.Automatic Modulation Recognition of Communication Signals Based on Instantaneous Statistical Characteristics and SVM Classifier//2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP).IEEE,2018:344-346. ASLAM M W,ZHU Z,NANDI A K.Automatic modulation classification using combination of genetic programming and KNN.IEEE Transactions on Wireless Communications,2012,11(8):2742-2750. O’SHEA T J,CORGAN J,CLANCY T C.Convolutional radio modulation recognition networks//International Conference on Engineering Applications of Neural Networks.Springer,Cham,2016:213-226. O’SHEA T J,HITEFIELD S,CORGAN J.End-to-end radio traffic sequence recognition with recurrent neural networks//2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).IEEE,2016:277-281. TANG B,TU Y,ZHANG Z,et al.Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks.IEEE Access,2018,6:15713-15722. HARTIGAN J A,WONG M A.Algorithm AS 136:A k-means clustering algorithm.Journal of the Royal Statistical Society.Series C (Applied Statistics),1979,28(1):100-108. HOCHREITER S,SCHMIDHUBER J.Long short-term memory.Neural Computation,1997,9(8):1735-1780. O’SHEA T,HOYDIS J.An introduction to deep learning for the physical layer.IEEE Transactions on Cognitive Communications and Networking,2017,3(4):563-575. |
[1] | WANG Rui-ping, JIA Zhen, LIU Chang, CHEN Ze-wei, LI Tian-rui. Deep Interest Factorization Machine Network Based on DeepFM [J]. Computer Science, 2021, 48(1): 226-232. |
[2] | YU Wen-jia, DING Shi-fei. Conditional Generative Adversarial Network Based on Self-attention Mechanism [J]. Computer Science, 2021, 48(1): 241-246. |
[3] | TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267. |
[4] | DING Yu, WEI Hao, PAN Zhi-song, LIU Xin. Survey of Network Representation Learning [J]. Computer Science, 2020, 47(9): 52-59. |
[5] | HE Xin, XU Juan, JIN Ying-ying. Action-related Network:Towards Modeling Complete Changeable Action [J]. Computer Science, 2020, 47(9): 123-128. |
[6] | YE Ya-nan, CHI Jing, YU Zhi-ping, ZHAN Yu-liand ZHANG Cai-ming. Expression Animation Synthesis Based on Improved CycleGan Model and Region Segmentation [J]. Computer Science, 2020, 47(9): 142-149. |
[7] | DENG Liang, XU Geng-lin, LI Meng-jie, CHEN Zhang-jin. Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting [J]. Computer Science, 2020, 47(9): 163-168. |
[8] | BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292. |
[9] | YUAN Ye, HE Xiao-ge, ZHU Ding-kun, WANG Fu-lee, XIE Hao-ran, WANG Jun, WEI Ming-qiang, GUO Yan-wen. Survey of Visual Image Saliency Detection [J]. Computer Science, 2020, 47(7): 84-91. |
[10] | WANG Wen-dao, WANG Run-ze, WEI Xin-lei, QI Yun-liang, MA Yi-de. Automatic Recognition of ECG Based on Stacked Bidirectional LSTM [J]. Computer Science, 2020, 47(7): 118-124. |
[11] | LIU Yan, WEN Jing. Complex Scene Text Detection Based on Attention Mechanism [J]. Computer Science, 2020, 47(7): 135-140. |
[12] | ZHANG Zhi-yang, ZHANG Feng-li, TAN Qi, WANG Rui-jin. Review of Information Cascade Prediction Methods Based on Deep Learning [J]. Computer Science, 2020, 47(7): 141-153. |
[13] | JIANG Wen-bin, FU Zhi, PENG Jing, ZHU Jian. 4Bit-based Gradient Compression Method for Distributed Deep Learning System [J]. Computer Science, 2020, 47(7): 220-226. |
[14] | CHEN Jin-yin, ZHANG Dun-Jie, LIN Xiang, XU Xiao-dong and ZHU Zi-ling. False Message Propagation Suppression Based on Influence Maximization [J]. Computer Science, 2020, 47(6A): 17-23. |
[15] | CHENG Zhe, BAI Qian, ZHANG Hao, WANG Shi-pu and LIANG Yu. Improving Hi-C Data Resolution with Deep Convolutional Neural Networks [J]. Computer Science, 2020, 47(6A): 70-74. |
|