Computer Science ›› 2015, Vol. 42 ›› Issue (3): 191-194, 200.doi: 10.11896/j.issn.1002-137X.2015.03.039

Previous Articles     Next Articles

Fatigue Recognition Algorithm Based on Deep Learning

ZHOU Hui, ZHOU Liang and DING Qiu-lin   

  • Online:2018-11-14 Published:2018-11-14

Abstract: Current domestic and overseas fatigue recognition algorithms are implemented using fatigue features which are mostly singular and man-made.Most of those algorithms have complex structure,low efficiency and weak adaptability for drivers’ individual behavior habit.To this end,the paper put forward a fatigue recognition algorithm based on deep learning.It introduces deep belief network (DBN) to simulate the data distribution of input images,extracts fatigue features automatically layer by layer,and then recognizes state of fatigue from video images based on time window.The algorithm adjusts the learning rate of the net adaptively to reduce pre-training time,uses feedback mechanism to let the net evolve by itself and as a consequence improves its adaptability for user personalized fatigue features.The experimental result shows that our algorithm acquires good fatigue features,and its misjudgment rate reduces gradually along with incremental time.

Key words: Fatigue recognition,Deep learning,DBN,Fatigue feature,Feedback mechanism

[1] Correa A G,Orosco L,Laciar E.Automatic detection of drowsi-ness in EEG records based on multimodal analysis[J].Medical Engineering & Physics,2014,6(2):244-249
[2] Li G,Chung W Y.Detection of Driver Drowsiness Using Wavelet Analysis of Heart Rate Variability and a Support Vector Machine Classifier[J].Sensors,2013,3(12):16494-16511
[3] 李伟,何其昌,范秀敏.基于汽车操纵信号的驾驶人疲劳状态监测[J].上海交通大学学报,2010,4(2):292-295
[4] 张希波,成波,冯睿嘉.基于转向盘操作的驾驶人疲劳状态实时检测方法[J].清华大学学报:自然科学版,2010,0(7):1072-1076
[5] 李绍文,王江波.驾驶员疲劳检测系统研究[J].计算机工程与应用,2013,9(15):253-258
[6] Hinton G,Salakhutdinov R.Reducing the Dimensionality of Data with Neural Networks[J].Science,2006,3(5786):504-507
[7] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,0(9):1799-1804
[8] Hinton G E,Osindero S.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2006,8:1527-1554
[9] 刘建伟,刘媛,罗雄麟.玻尔兹曼机研究进展[J].计算机研究与发展,2014,1(1):1-16
[10] Hinton G.Trainging Products of Experts by Minimizing Contrastive Divergence[J].Neural Computation,2002,4(8):1771-1800
[11] Neal R M,Hinton G E.A View of the EM Algorithm that Justifies Incremental,Sparse and other Variants[M]∥Learning in Graphical Models,1998,5-368
[12] 蒋斌,贾克斌,杨国胜.人脸表情识别的研究进展[J].计算机科学,2011,8(4):25-31
[13] Dasgupta A,George A,Happy SL,et al.A Vision-Based System for Monitoring the Loss of Attention in Automotive Drivers[J].IEEE Transactions on Intelligent Transportation Systems,2013,4(4):1825-1838
[14] 张伟,夏利民,罗大庸.基于人脸运动信息和改进保局投影的疲劳识别[J].计算机科学,2010,7(11):265-267
[15] Cyganek B,Gruszczynski S.Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring[J].Neural computation,2014,6(SI):78-94
[16] 孙树亮,林雪云.基于记忆的SVM相关反馈算法[J].计算机科学,2011,8(10):256-258
[17] 陈云华,余永权,张灵,等.基于面部视觉特征的精神疲劳可拓辨识模型[J].计算机科学,2013,0(2):284-288

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .