Computer Science ›› 2017, Vol. 44 ›› Issue (Z11): 503-509.doi: 10.11896/j.issn.1002-137X.2017.11A.107

Previous Articles     Next Articles

Multi-objective Moth-flame Optimization Algorithm Based Optimal Reactive Power Dispatch for Power System

LI Wei-kun, QUE Bo, WANG Wan-liang and NI Li-zhou   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In view of the increasing power energy demand and the drawback of conventional reactive power optimization methods,how to effectively solve the reactive power optimization has become a hot spot in power research.This paper proposed a multi-objective model of reactive power optimization problems in power system and a multi-objective moth-flame optimization algorithm (MOMFA) to optimize problems with multiple objectives for the first time.A fixed-sized external archive,grid and select mechanism are integrated to the MOMFA for maintaining and improving the pareto optimal solutions.The proposed algorithm is compared with two well-known algorithms on CEC multi-objective optimization test problems.Moreover,the proposed algorithm was simulated in real power system data and compared with two well-known algorithms:multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm version 2(NSGA-II).The results demonstrate that the proposed algorithm is outperforms other algorithms in reactive power optimization.

Key words: Multi-objective optimization,Evolutionary algorithm,Reactive power optimization,Moth-flame,Power system

[1] 张勇军,任震,李邦峰.电力系统无功优化调度研究综述[J].电网技术,2005,29(2):50-56.
[2] SASSON A M.Combined Use of the Powell and Fletcher-Powell Nonlinear Programming Methods for Optimal Load Flows[J].IEEE Transactions on Power Apparatus & Systems,1969,PAS-88(10):1530-1537.
[3] 罗铸.电力系统无功和电压的优化调节[J].电力系统自动化,1988,2(1):11-17.
[4] 程莹,刘明波.求解离散无功优化的非线性原—对偶内点算法[J].电力系统自动化,2001,25(9):23-27.
[5] COELLO C A C.Evolutionary multi-objective optimization:ahistorical view of the field[J].Computational Intelligence Maga-zine,IEEE,2006,1(1):28-36.
[6] COELLO C A C,VAN VELDHUIZEN D A, LAMONT G B.Evolutionary algorithms for solving multi-objective problems[M]∥New York:Kluwer Academic.2002.
[7] IBA K.Reactive power optimization by genetic algorithm m[J].IEEE Transactions on Power Systems,1994,9(2):685-692.
[8] 张勇军,任震,钟红梅,等.实时无功优化调度中的邻域搜索改进遗传算法[J].电网技术,2003,27(1):22-25.
[9] 张勇军,任震,钟红梅,等.基于灾变遗传算法的无功规划优化[J].电力系统自动化,2002,26(23):29-32.
[10] 赵登福,周文华,张伏生,等.遗传算法在无功优化应用中的改进[J].电网技术,1998,22(10):34-36.
[11] 王志华,尹项根,李光熹.伪并行遗传算法在无功优化中的应用[J].电网技术,2003,27(8):33-35.
[12] 周晖,周任军,谈顺涛,等.用于无功电压综合控制的改进粒子群优化算法[J].电网技术,2004,28(13):45-49.
[13] 吴秀华,朴在林,徐静,等.基于改进粒子群优化算法的电力系统无功电压综合控制[J].电力系统保护与控制,2007,35(21):28-33.
[14] WU Q H,MA J T.Power system optimal reactive power dispatch using evolutionary programming[J].IEEE Transactions on Power Systems,1995,10(3):1243-1249.
[15] GOMES J R,SAAVEDRA O R.Optimal reactive power dis-patch using evolutionary computation:extended algorithms[J].IET Proceedings-Generation Transmission and Distribution,1999,146(6):586-592.
[16] PRADHAN P M,PANDA G.Solving multi-objective problems using cat swarm optimization [J].Expert Systems with Applications,2012,39(3):2956-2964.
[17] 顾丹珍,徐瑞德.一种地区电网多目标无功优化的新方法—改进模拟退火算法[J].电网技术,1998,22(1):71-74.
[18] 王克文,张东岳.电力系统无功优化算法综述[J].电测与仪表,2016,53(10):73-76.
[19] WOLPERT D H,MACREADY W G.No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
[20] 张蓓,郑宇军.水波优化算法收敛性分析[J].计算机科学,2016,3(4):41-44.
[21] 李章维,周晓根,张贵军.一种动态自适应差分进化算法[J].计算机科学,2015,2(6A):52-56,74
[22] MIRJALILI S.Moth-flame optimization algorithm:A novel nature-inspired heuristic paradigm[J].Knowledge-Based Systems,2015,89:228-249.
[23] COELLO C A C,PULIDO G T,LECHUGA M S.Handlingmultiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
[24] ZHANG Q,ZHOU A,ZHAO S,et al.Multi-objective optimization test instances for the CEC 2009 special session and competition.
[25] SIERRA M R,COELLO C A C.Improving PSO-based multiobjective optimization using crowding,mutation and∈-dominance[M]∥Evolutionary multi-criterion optimization.Springer Berlin Heidelberg,2005:505-519.
[26] VAN VELDHUIZEN D A,LAMONT G B.On measuring multi-objective evolutionary algorithm performance[C]∥Proceedings of the 2000 Congress on Evolutionary Computation.IEEE,2000,1:204-211.
[27] ZITZLER E,DEB K,THIELE L.Comparison of multiobjective evolutionary algorithms:Empirical results[J].Evolutionary computation,2000,8(2):173-195.
[28] KACHORE P,PALANDURKAR M V.TTC and CBM Calculation of IEEE-30 Bus System[C]∥International Conference on Emerging Trends in Engineering & Technology,Icetet 2009.Nagpur,Maharashtra,India,2009:539-542.
[29] EISSA M M,ABDEL-HAMEEDT S,G ABBAR H.A novel approach for optimum number and location of FACTS devices on IEEE-30 bus grid using meta-heuristic basd Harmony Search[C]∥IEEE International Conference on Smart Energy Grid Engineering.2013:1-10.
[30] 陈前宇,陈维荣,戴朝华.电力系统无功优化多目标处理与算法改进[J].电力系统保护与控制,2014,2(5):129-135.

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .