Computer Science ›› 2018, Vol. 45 ›› Issue (2): 165-170, 188.doi: 10.11896/j.issn.1002-137X.2018.02.029

Previous Articles     Next Articles

Capacity Analysis of Energy Harvesting Wireless Communication Channel Based on Hybrid Energy Storage

YAO Xin-wei, ZHONG Li-bin, WANG Wan-liang and YANG Shuang-hua   

  • Online:2018-02-15 Published:2018-11-13

Abstract: Due to the constraints of the instability of energy source and the limited storage capacities of devices in exis-ting energy harvesting technology,a hybrid energy storage structure composed by super capacitor and battery was proposed for device,and the corresponding channel capacity of the proposed structure model was analyzed.Firstly,an energy harvesting channel model based on hybrid energy storage structure was presented for a point-to-point energy harvesting communication system.Secondly,by considering the intermittent peculiarities of energy harvesting,this paper assumed that the energy arrival process conforms to the Bernoulli stochastic process.A near optimal allocation policy was proposed with the upper and lower bounds of the average system throughput.In particular,the gap of two bounds is derived to be a constant,then the approximate channel capacity is obtained.Finally,simulation results illustrate that the gap between the upper and lower bounds of channel capacity is 1.77bps/Hz and 2.49bps/Hz respectively,when harvesting energy is less than and more than storage capacity of super capacitor.Meanwhile, the experiment results show that compared with the conventional wireless node with single battery storage,the hybrid energy storage structure can improve the energy utilization and increase the channel capacity of system.The upper bound of channel capacity can be increased up to 70% when the storage capacity ratio of supper capacitor and battery is 12.

Key words: Hybrid energy storage,Energy harvesting,Channel capacity,Energy assignment,Energy arrival process

[1] HAN J H,DING X,SHI L,et al.Research on the time-varying charging and dynamic data routing strategy for rechargeable wireless sensor networks[J].Journal on Communications,2012,2012(12):1-10.(in Chinese) 韩江洪,丁煦,石雷,等.无线传感器网络时变充电和动态数据路由算法研究[J].通信学报,2012,2012(12):1-10.
[2] PARADISO J A,STARNER T.Energy Scavenging for Mobile and Wireless Electronics [J].IEEE Pervasive Computing,2005,4(1):18-27
[3] SU B,LI Y Q,YU H Y,et al.The Wireless Sensor Node Harvesting Energy from Environment [J].Chinese Journal of Sensors & Actuators,2008,21(9):1586-1589.(in Chinese) 苏波,李艳秋,于红云,等.从环境中获取能量的无线传感器节点[J].传感技术学报,2008,21(9):1586-1589.
[4] JIANG X F,POLASTRE J,CULLER D.Perpetual environmentally powered sensor networks[C]∥International Symposium on Information Processing in Sensor Networks.IEEE Press,2005:463-468.
[5] SUDEVALAYAM S,KULKAMI P.Energy Harvesting Sensor Nodes:Survey and Implications[J].IEEE Communications Surveys & Tutorials,2011,13(3):443-461.
[6] YAO X W,ZHENG X H,WANG W L,et al.A Bi-dimensional Wireless Energy Transfer Mechanism for Maximum Network Throughput [J].Computer Science,2015,42(11):164-169.(in Chinese) 姚信威,郑星航,王万良,等.吞吐量最大化的二维无限能量传输算法[J].计算机科学,2015,2(11):164-169.
[7] YANG J,ULUKUS S.Optimal Packet Scheduling in an Energy Harvesting Communication System[J].IEEE Transactions on Communications,2010,60(1):220-230.
[8] OZEL O,TUTUNCUOGLU K,YANG J,et al.Transmissionwith Energy Harvesting Nodes in Fading Wireless Channels:Optimal Policies [J].IEEE Journal on Selected Areas in Communications,2011,29(8):1732-1743.
[9] OZEL O,SHAHZAD K,ULUKUS S.Optimal Energy Allocation for Energy Harvesting Transmitters With Hybrid Energy Storage and Processing Cost[J].IEEE Transactions on Signal Processing,2014,62(12):3232-3245.
[10] OZEL O,TUTUNCUOGLU K,ULUKUS S,et al.Fundamental limits of energy harvesting communications[J].IEEE Communications Magazine,2015,53(4):126-132.
[11] OZEL O,ULUKUS S.Information-theoretic analysis of an energy harvesting communication system[C]∥International Symposium on Personal,Indoor and Mobile Radio Communications Workshops.IEEE Xplore,2010:330-335.
[12] OZEL O,ULUKUS S.Achieving AWGN Capacity Under Stochastic Energy Harvesting [J].IEEE Transactions on Information Theory,2012,58(10):6471-6483.
[13] RAJESH R,SHARMA V,VISWANATH P.Capacity of Gaus-sian Channels with Energy Harvesting and Processing Cost [J].IEEE Transactions on Information Theory,2014,60(5):2563-2575.
[14] MAO W,HASSIBI B.On the capacity of a communication system with energy harvesting and a limited battery [C]∥ IEEE International Symposium on Information Theory Proceedings.2013:1789-1793.
[15] JOG V,ANANTHARAM V.An energy harvesting AWGNchannel with a finite battery[C]∥ IEEE International Symposiumon Information Theory.2014:806-810.
[16] TUTUNCUOGLU K,OZEL O,YENER A,et al.Binary energy harvesting channel with finite energy storage[C]∥ IEEE International Symposium on Information Theory Proceedings.2013:1591-1595.
[17] DONG Y,FARNIA F,OZGUR A.Near Optimal Energy Control and Approximate Capacity of Energy Harvesting Communication[J].IEEE Journal on Selected Areas in Communications,2014,33(3):540-557.
[18] DONG Y,OZGUR A.Approximate capacity of energy harvesting communication with finite battery[C]∥IEEE International Symposium on Information Theory.2014:801-805.
[19] SHAVIV D,NGUYEN P M,OZGUR A.Capacity of the Energy Harvesting Channel with a Finite Battery[C]∥2015 IEEE International Symposium on Information Theory (ISIT).IEEE,2015:131-135.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .