Computer Science ›› 2018, Vol. 45 ›› Issue (4): 266-272.doi: 10.11896/j.issn.1002-137X.2018.04.045

Previous Articles     Next Articles

Optimization of Networked Air-defense Operational Formation Structure Based on Bilevel Programming

LI Hui, ZHOU Lin and XIN Wen-bo   

  • Online:2018-04-15 Published:2018-05-11

Abstract: Scientific and reasonable operational formation air-defense structure(OFAS) is important to ensure the safety of formation,and improve the reliability and validity of operational missions.Aiming at the optimization problem of OFAS,firstly,relevant concepts of OFAS were defined and general process of formation air-defense operation was ana-lyzed.Secondly,based on the theory of bilevel programming,taking the farthest distance between defending nodes and core node and the strongest anti-saturation striking capability as upper and lower target respectively,the double layers optimization model for OFAS was built by comprehensively considering detection angle covering,fire intercepting time,missile twice catching and so on.Then,the hierarchical particle swarm optimization algorithm was introduced to solve the model,and concrete operation steps were given.Finally,taking OFAS for surface ships as an example,the optimal air-defense network structure was built,and the maximum anti-saturation striking capability was calculated.The rationality and feasibility of the model and method are verified through contrast with typical column and arc formation structures.

Key words: Operational formation,Air-defense structure,Optimization,Bilevel programming,Hierarchical particle swarm optimization algorithm

[1] HU X F.A brief survey on war complex networks studies [J].Cpmplex Syetems and Complexity Science,2010,7(2/3):24-28.(in Chinese) 胡晓峰.战争复杂网络研究概述[J].复杂系统与复杂性科学,2010,7(2/3):24-28.
[2] LIU L J,LI X M,YAN J.Key-point air defense fan-shaped deployment with large-dimensional multi-objecyive multi-constraint group divided optimization [J].Systems Engineering and Electronics,2013,35(12):2513-2520.(in Chinese) 刘立佳,李相民,颜骥.基于高维多目标多约束分组优化的要地防空扇形优化部署[J].系统工程与电子技术,2013,35(12):2513-2520.
[3] ALBERTS D S.The agility advantage:a survival guide for complex enterprises and endeavors[M].Washington DC:CCRP Publication Series,2011:4-10.
[4] ZHU Z,LEI Y L,ZHU Y F.Modeling and simulation of operation process for networked air and missle defense systems [J].Journal of National University of Defense Techonology,2015,37(3):179-184.(in Chinese) 朱智,雷永林,朱一凡.网络化防空反导体系的作战过程建模与仿真[J].国防科技大学学报,2015,37(3):179-184.
[5] ZHAO J Y,LIU F.Deployment optimization of two warshipsformation for air defense [J].Acat Armamentarii,2010,31(6):865-869.(in Chinese) 赵建印,刘芳.海上编队双舰防空队形部署优化研究[J].兵工学报,2010,31(6):865-869.
[6] HUANG J C,CHEN S R,CHENG G Q.Modeling and analysis of air defense process for warship formation [J].Journal of National University of Defense Techonology,2014,36(3):184-190.(in Chinese) 黄金才,陈洒然,程光权.舰艇编队防空过程建模及分析[J].国防科技大学学报,2014,36(3):184-190.
[7] WANG B Y,ZHAO X Z,WANG J.Optimizing the combat network on the anti-ship of vessel formation [J].Systems Engineering-Theory & Practice,2013,33(9):2354-2361.(in Chinese) 王步云,赵晓哲,王军.水面舰艇编队反舰作战中作战网络结构的优化[J].系统工程理论与实践,2013,33(9):2354-2361.
[8] JING F B,KANG X Y.Research on the firing times model of the anti-missile interception for surface ship formation [J].Ship Science and Tehcnology,2011,33(3):120-122.(in Chinese) 荆发标,康晓予.编队防空反导作战拦截次数模型[J].舰船科学技术,2011,33(3):120-122.
[9] ZOU Z G,LIU F X,SUN S M,et al.Ripple-effect analysis for operational architecture of air defense systems with supernetwork modeling [J].Journal of Systems Engineering and Electronics,2014,25(2):249-263.
[10] LEE M Z.Constrained weapon-target assignment enhanced very large scale neighborhood search algorithm[J].IEEE Transaction on Systems,Man and Cybernetics,Part A:Systems and Humans,2011,41(3):598-606.
[11] BARKALOV A A,BABAKOV R M.Operational formation of state codes in microprogram automata [J].Cybernetics and Systems Analysis,2011,47(2):193-197.
[12] BAYRAK A E,POLAT F.Employment of an evolutionary heuristic to solve the target allocation problem efficiently [J].Information Sciences,2013,222(3):675-695.
[13] LI C B,DU M K,FU D Q.Solution strategy for bi-level nonli-near programming problem based on hierarchical particle swarm optimization [J].Systems Engineering-Theory & Practice,2013,33(9):2292-2293.(in Chinese) 李昌兵,杜茂康,付德强.基于层次粒子群算法的非线性双层规划问题求解策略[J].系统工程理论与实践,2013,33(9):2292-2293.
[14] CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space [J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
[15] JIA S H.A New Descent Method for Solving Ill-Posed Bilevel Programming Problems via Maxmin Model[C]∥The fourth International Conference on Digital Manufacturing & Automation.2013:47-50.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Computer Science, 2018, 1(1): 1 .
[2] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[3] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[4] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[5] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[6] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[7] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[8] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[9] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[10] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .