Computer Science ›› 2019, Vol. 46 ›› Issue (1): 107-111.doi: 10.11896/j.issn.1002-137X.2019.01.016

• CCDM2018 • Previous Articles     Next Articles

Edge Bundling Method of Spiral Graph Based on Interval Classification

ZHU Li-xia, LI Tian-rui, TENG Fei, PENG Bo   

  1. (School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
  • Received:2018-05-11 Online:2019-01-15 Published:2019-02-25

Abstract: Spiral graph is a common visualization method in visualizing time series data.It can not only simultaneous display the multiple-stages data in one plane space,but also demonstrate the data with different time length in a limited space.In order to solve the problem of visual clutter caused by the intersection of helical lines in the present spiral image visualization methods,a method of edge bundling is of great significance.First,the data points on the state circle are classified.Then the virtual bundling circles are set between the adjacent state circles,and the data points on the state ring are mapped to the corresponding virtual bundling circle by the function of edge bundling.Finally,in order to achieve the effect of curve bundling,the Bézier curve is drawn between the state circle and its corresponding virtual bundling circle,and the spiral curve is drawn between the virtual bundling circle and the virtual bundling circle.Experimental results show that the edge-bundling algorithm is effective for large-scale data visualization and can effectively alleviate the problem of visual clutter.

Key words: Visualization, Spiral graph, Edge bundling, Time series

CLC Number: 

  • TP311.11
[1]WEBER M,ALEXA M,MÜLLER W.Visualizing Time-Series on Spirals[C]//Proceedings of IEEE Symposium on Information Visualization.IEEE,2001:7-13.<br /> [2]TOMINSKI C,ABELLO J,SCHUMANN H.Axes-based visualizations with radial layouts[C]//Proceedings of ACM Sympo-sium on Applied Computing.ACM,2004:1242-1247.<br /> [3]LEI H,XIA J,GUO F,et al.Visual exploration of latent ranking evolutions in time series[J].Journal of Visualization,2016,19(4):1-13.<br /> [4]JIANG T T,XIAO W D,ZHANG C,et al.Text visualization method for time series based on Sankey diagram[J].Application Research of Computers,2016,33(9):2683-2687.(in Chinese)姜婷婷,肖卫东,张翀,等.基于桑基图的时间序列文本可视化方法[J].计算机应用研究,2016,33(9):2683-2687.<br /> [5]BOUALI F,DEVAUX S,BASTIEN,et al.Visual mining of time series using a tubular visualization[J].Visual Computer,2016,32(1):15-30.<br /> [6]YANG H H,LI T R,CHEN X D.Visualization of time series data based on spiral graph[J].Journal of Computer Applications,2017,37(9):2443-2448.(in Chinese)<br /> 杨欢欢,李天瑞,陈馨菂.基于螺旋图的时间序列数据可视化[J].计算机应用,2017,37(9):2443-2448.<br /> [7]ZHOU H,XU P,YUAN X,et al.Edge Bundling in Information Visualization[J].Tsinghua Science and Technology,2013,18(2):145-156.<br /> [8]GANSNER E,HU Y,NORTH S,et al.Multilevel agglomerative edge bundling for visualizing large graphs[C]//Proceedings of IEEE Pacific Visualization Symposium.IEEE,2011:187-194.<br /> [9]MCDONNELL K T,MUELLER K.Illustrative parallel coordinates[J].Computer Graphics Form,2008,27(3):1031-1038.<br /> [10]ZHOU H,YUAN X R,QU H M,et al.Visual clustering in parallel coordinates[J].Computer Graphics Forum,2008,27(3):1047-1054.<br /> [11]HEINRICH J,LUO Y,KIRKPATRICK A E,et al.Evaluation of a bundling technique for parallel coordinates[J].Energy Conversion & Management,2011,88(5):259-266.<br /> [12]PALMAS G,BACHYNSKYI M,OULASVIRTA A,et al.An edge-bundling layout for interactive parallel coordinates[C]//Proceedings of IEEE Pacific Visualization Symposium.IEEE,2014:57-64.<br /> [13]SPURR B D.Density estimation for statistics and data analysis[J].Journal of the Royal Statistical Society,1987,150(4):403-404.<br /> [14]QIN H X,WEI X S.A Study on Edge Bundling Technology in Parallel Coordinates[J].Journal of Computer-Aided Design & Computer Graphics,2017,29(7):1235-1244.(in Chinese)<br /> 秦红星,卫学仕.平行坐标中的边捆绑算法[J].计算机辅助设计与图形学学报,2017,29(7):1235-1244.<br /> [15]KANUNGO T,MOUNT D M,NETANYAHU N S,et al.An efficient k-means clustering algorithm:analysis and implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):881-892.<br /> [16]HOLTEN D,VAN WIJK J J.Evaluation of Cluster Identification Performance for Different PCP Variants[J].Computer Graphics Forum,2010,29(3):793-802.
[1] MA Meng-yu, WU Ye, CHEN Luo, WU Jiang-jiang, LI Jun, JING Ning. Display-oriented Data Visualization Technique for Large-scale Geographic Vector Data [J]. Computer Science, 2020, 47(9): 117-122.
[2] CUI Tong-tong, WANG Gui-ling, GAO Jing. Ship Trajectory Classification Method Based on 1DCNN-LSTM [J]. Computer Science, 2020, 47(9): 175-184.
[3] LV Ze-yu, LI Ji-xuan, CHEN Ru-Jian and CHEN Dong-ming. Research on Prediction of Re-shopping Behavior of E-commerce Customers [J]. Computer Science, 2020, 47(6A): 424-428.
[4] LI Tian-pei, CHEN Li. Retinal Vessel Segmentation Based on Dual Attention and Encoder-decoder Structure [J]. Computer Science, 2020, 47(5): 166-171.
[5] SHANG Jun-yuan, YANG Le-han, HE Kun. Analyzing Latent Representation of Deep Neural Networks Based on Feature Visualization [J]. Computer Science, 2020, 47(5): 190-197.
[6] DU Liu-yun, ZHENG Zhi-jie, ZHENG Hua-xian. Visualization of DNA Sequences of Two Kinds of Bacteria Under Firmicutes [J]. Computer Science, 2020, 47(11A): 192-195.
[7] DING Wu, MA Yuan, DU Shi-lei, LI Hai-chen, DING Gong-bo, WANG Chao. Mining Trend Similarity of Multivariate Hydrological Time Series Based on XGBoost Algorithm [J]. Computer Science, 2020, 47(11A): 459-463.
[8] YAN Xiang-xiang. Using ARIMA Model to Predict Green Area of Park [J]. Computer Science, 2020, 47(11A): 531-534.
[9] WANG Xu-liang, NIE Tie-zheng, TANG Xin-ran, HUANG Ju, LI Di, YAN Ming-sen, LIU Chang. Study on Dynamic Adaptive Caching Strategy for Streaming Data Processing [J]. Computer Science, 2020, 47(11): 122-127.
[10] WANG Yang, LI Peng, JI Yi-mu, FAN Wei-bei, ZHANG Yu-jie, WANG Ru-chuan, CHEN Guo-liang. High Performance Computing and Astronomical Data:A Survey [J]. Computer Science, 2020, 47(1): 1-6.
[11] SONG Xiao-xiang,GUO Yan,LI Ning,YU Dong-ping. Missing Data Prediction Algorithm Based on Sparse Bayesian Learning in Coevolving Time Series [J]. Computer Science, 2019, 46(7): 217-223.
[12] ZHANG He-jie,MA Wei-hua. Subway Passenger Flow Forecasting Model Based on Temporal and Spatial Characteristics [J]. Computer Science, 2019, 46(7): 292-299.
[13] MA Ying-yi, LI Hong-ping, GUO Yi-feng. Visualization of Wind Vectors Using Line Integral Convolution with Visual Perception [J]. Computer Science, 2019, 46(6A): 242-245.
[14] ZHENG Hong-bo, WU Bin, XU Fei, ZHANG Mei-yu, QIN Xu-jia. Visualization of Solid Waste Incineration Exhaust Emissions Based on Gaussian Diffusion Model [J]. Computer Science, 2019, 46(6A): 527-531.
[15] GE Na, SUN Lian-ying, SHI Xiao-da, ZHAO Ping. Research on Sales Forecast of Prophet-LSTM Combination Model [J]. Computer Science, 2019, 46(6A): 446-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Computer Science, 2018, 1(1): 1 .
[2] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[3] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[4] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[5] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[6] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[7] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[8] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[9] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[10] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .