Computer Science ›› 2019, Vol. 46 ›› Issue (9): 237-242.doi: 10.11896/j.issn.1002-137X.2019.09.035

• Artificial Intelligence • Previous Articles     Next Articles

Chinese Named Entity Recognition Method Based on BGRU-CRF

SHI Chun-dan, QIN Lin   

  1. (School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
  • Received:2018-08-13 Online:2019-09-15 Published:2019-09-02

Abstract: Aiming at the problem that the traditional named entity recognition method relies heavily on plenty of hand-crafted features,domain knowledge,word segmentation effect,and does not make full use of word order information,anamed entity recognition model based on BGRU(bidirectional gated recurrent unit) was proposed.This model utilizes external data and integrates potential word information into character-based BGRU-CRF by pre-training words into dictionaries on large automatic word segmentation texts,making full use of the information of potentialwords,extracting comprehensive information of context,and more effectively avoiding ambiguity of entity.In addition,attention mechanism is used to allocate the weight of specific information in BGRU network structure,which can select the most relevant characters and words from the sentence,effectively obtain long-distance dependence of specific words in the text,recognize the classification of information expression,and identify named entities.The model explicitly uses the sequence information between words,and is not affected by word segmentation errors.Compared with the traditional sequence labeling model and the neural network model,the experimental results on MSRA and OntoNotes show that the proposed model is 3.08% and 0.16% higher than the state-of-art complaint models on the overall F1 value respectively.

Key words: Attention mechanism, Bidirectional gated recurrent unit, Named entity recognition

CLC Number: 

  • TP391
[1]DUAN H,ZHENG Y.A Study on Features of the CRFs-based Chinese Named Entity Recognition[J].International Journal of Advanced Intelligence Paradigms,2011,3(2):287-294.
[2]ZHOU G D,SU J.Named Entity Recognition Using an HMM-based Chunk Tagger[C]//Proceedings of the 40th Annual Mee-ting of the Association for Computational Linguistics(ACL).2002:473-480.
[3]HUANG Z H,XU W,YU K.Bidirectional LSTM-CRF Models for Sequence Tagging[J/OL].https://arxiv.org/abs/1508.01991.
[4]MA X Z,HOVY E.End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[J/OL].http://adsabs.harvard.edu/abs/2016arXiv160301354M.
[5]CHIU J P C,NICHOLS E.Named Entity Recognition with Bidi-rectional LSTM-CNNs[J/OL].https://arxiv.org/abs/1511.08308.
[6]LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neural Architectures for Named Entity Recognition[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(NAACL-HLT2016).2016:260-270.
[7]PETERS M E,AMMAR W,BHAGAVATULA C,et al.Semi-supervised Sequence Tagging with Bidirectional Language Mo-dels[C]//Proceedings of the 55th Annual Meeting of the Asso-ciation for Computational Linguistics.2017:1756-1765.
[8]YANG Z,SALAKHUTDINOV R,COHEN W W.TransferLearning for Sequence Tagging with Hierarchical Recurrent Networks[C]//International Conference on Learning Representations(ICLR 2017).2017.
[9]LIU Z,ZHU C,ZHAO T.Chinese Named Entity Recognition with a Sequence Labeling Approach:Based on Characters,or Based on Words?[M].Berlin:Springer Berlin Heidelberg,2010:634-640.
[10]YANG Z,SALAKHUTDINOV R,COHEN W.Multi-TaskCross-Lingual Sequence Tagging from Scratch[J].arXiv:1603.06270,2016.
[11]SHIMAOKA S,STENETORP P,INUI K,et al.An Attentive Neural Architecture for Fine-grained Entity Type Classification[C]//Proceedings of the 5th Workshop on Automated Know-ledge Base Construction.2016.
[12]LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of the Eighteenth International Conference on Machine Learning (ICML-2001).2001:282-289.
[13]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems.Berlin:Springer,2013:3111-3119.
[14]YANG J,ZHANG Y,DONG F.Neural word segmentation with rich pretraining[EB/OL].https://www.researchgate.net/publication/316598949_Neural_Word_Segmentation_with_Rich_Pretraining.
[15]CHEN A,PENG F,SHAN R,et al.Chinese named entity recognition with conditional probabilistic models[EB/OL].https://www.semanticscholar.org/paper/Chinese-Named-Entity-Recog-nition-with-Conditional-Chen-Peng/7c3c13060b7101816a11566-eda4fa21d2a82af9e.
[16]ZHANG S,WEN J,WANG X.Word Segmentation and Named Entity Recognition for SIGHAN Bakeoff3[C]//Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing.2006:158-161.
[17]ZHOU J,HE L,DAI X,et al.Chinese Named Entity Recognition with a Multi-Phase Model[EB/OL].http://www.docin.com/p-195138504.html.
[18]ZHOU J,QU W,ZHANG F.Chinese Named Entity Recognition via Joint Identification and Categorization[J].Chinese Journal of Electronics,2013,22(2):225-230.
[19]DONG C,ZHANG J,ZONG C,et al.Character-Based LSTM-CRF with Radical-Level Features for Chinese Named Entity Recognition[C]//International Conference on Computer Processing of Oriental Languages.Springer International Publi-shing,2016:239-250.
[20]WANG M,CHE W,MANNING C D.Effective bilingual constraints for semi-supervised learning of named entity recognizers[C]//Twenty-Seventh AAAI Conference on Artificial Intelligence.AAAI Press,2013:919-925.
[21]CHE W X,WANG M Q,MANNING C D,et al.Named entity recognition with bilingual constraints[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2013).2013:52-62.
[22]YANG J,ZHANG Y,DONG F.Neural Word Segmentationwith Rich Pretraining[EB/OL].http://www.researchgate.net/profile/Jie_Yang126/publication/318740993_Neural_Word_Segmentation_with_Rich_Pretraining/links/59a4ff84a6fdcc773a389875/Neural-Word-Segmentation-with-Rich-Pretrai-ning.pdf.
[23]ZHANG H N,WU D Y,LIU Y,et al.Chinese Named EntityRecognition Based on Deep Neural Network[J].Journal of Chinese Information Processing,2017,31(4):28-35.(in Chinese)张海楠,伍大勇,刘悦,等.基于深度神经网络的中文命名实体识别[J].中文信息学报,2017,31(4):28-35.
[24]FENG Y H,YU H,SUN G,et al.Named Entity Recognition Method Based on BLSTM[J].Computer Science,2018,45(2):261-268.(in Chinese)冯艳红,于红,孙庚,等.基于BLSTM的命名实体识别方法[J].计算机科学,2018,45(2):261-268.
[1] ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63.
[2] DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145.
[3] ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161.
[4] XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182.
[5] RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207.
[6] WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48.
[7] JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335.
[8] ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119.
[9] SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177.
[10] YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236.
[11] JIN Fang-yan, WANG Xiu-li. Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM [J]. Computer Science, 2022, 49(7): 179-186.
[12] XIONG Luo-geng, ZHENG Shang, ZOU Hai-tao, YU Hua-long, GAO Shang. Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism [J]. Computer Science, 2022, 49(7): 212-219.
[13] PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247.
[14] ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105.
[15] ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!