Computer Science ›› 2021, Vol. 48 ›› Issue (1): 209-216.doi: 10.11896/jsjkx.191200111

• Artificial Intelligence • Previous Articles     Next Articles

Survey on Target Site Prediction of Human miRNA Based on Deep Learning

LI Ya-nan, HU Yu-jia, GAN Wei, ZHU Min   

  1. College of Computer Science,Sichuan University,Chengdu 610065,China
  • Received:2019-12-18 Revised:2020-05-11 Online:2021-01-15 Published:2021-01-15
  • About author:LI Ya-nan,born in 1995,postgraduate,is a member of China Computer Federation.His main research interests include data mining and bioinformatics.ZHU Min,born in 1971,Ph.D,professor,is a senior member of China Computer Federation.Her main research interests include bioinformatics,information visualization and visual analytics.
  • Supported by:
    National Science and Technology Major Project During the Thirteenth Five-Year Plan(2018ZX10201002).

Abstract: MicroRNAs(miRNAs) are 22~23 nt small non-coding RNAs that play an important role in biological evolution.Mature miRNA will completely or incompletely pair with the target site in 3'UTR region of message RNAs(mRNAs) through its seed region,to achieve the function of cleavage and translational repression so on.As the mechanism of miRNA binding to mRNA target sites is still unclear,the prediction of miRNA target sites has been a major challenge and problem in the field of miRNA research.Although the experimental method is accurate,it is time-consuming and expensive.In Bioinformatics,although the calculation method based on rule matching can predict the target site,it has the problem of low accuracy.With the development of deep learning and the abundance of experimental data,the method based on deep learning has become a research hotspot in the field of miRNA target prediction.Firstly,this paper introduces the commonly used data sets,prediction types and common feature of miRNA prediction,then explains the commonly used deep learning model in prediction research.Next,the conventional prediction methods and prediction methods based on deep learning are introduced.Meanwhile,these methods are classified and summarized.Finally,the current problems and future development of using deep learning to predict miRNA target are discussed.

Key words: miRNA, Target site prediction, Convolutional neural network, Recurrent neural network, Autoencoder

CLC Number: 

  • TP181
[1] KIM,NARRY V.MicroRNA biogenesis:coordinated croppingand dicing[J].Nature Reviews Molecular Cell Biology,2005,6(5):376-385.
[2] IBÁÑEZ-VENTOSO C,VORA M,DRISCOLL M.Sequence relationships among C.elegans,D.melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology[J].PloS one,2008,3(7):e2818-e2818.
[3] KOTA J,CHIVUKULA R R,O'DONNELL K A,et al.Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J].Cell,2009,137(6):1005-1017.
[4] MA L,REINHARDT F,PAN E,et al.Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model[J].Nature Biotechnology,2010,28(4):341-347.
[5] MA L,TERUYA-FELDSTEIN J,WEINBERG R A.Tumourinvasion and metastasis initiated by microRNA-10b in breast cancer[J].Nature,2007,449(7163):682-688.
[6] THOMAS M,LIEBERMAN J,LAL A.Desperately seeking microRNA targets[J].Nature Structural & Molecular Biology,2010,17(10):1169-1174.
[7] BARTEL D P.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[8] HUANG J C,BABAK T,CORSON T W,et al.Using expression profiling data to identify human microRNA targets[J].Nature Methods,2007,4(12):1045-1049.
[9] ALIPANAHI B,DELONG A,WEIRAUCH M T,et al.Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[J].Nature Biotechnology,2015,33(8):831-838.
[10] ESTEVA A,KUPREL B,NOVOA R A,et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542(7639):115-118.
[11] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[12] ZHOU J,TROYANSKAYA O G.Predicting effects of noncoding variants with deep learning-based sequence model[J].Nature Methods,2015,12(10):931-934.
[13] KARAGKOUNI D,PARASKEVOPOULOU M D,CHATZOPOULOS S,et al.DIANA-TarBase v8:a decade-long collection of experimentally supported miRNA-gene interactions[J].Nucleic Acids Research,2017,46(D1):D239-D245.
[14] CHOU C H,SHRESTHA S,YANG C D,et al.miRTarBase update 2018:a resource for experimentally validated microRNA-target interactions[J].Nucleic Acids Research,2017,46(D1):D296-D302.
[15] HELWAK A,KUDLA G,DUDNAKOVA T,et al.Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding[J].Cell,2013,153(3):654-665.
[16] BRENNECKE J,STARK A,RUSSELL R B,et al.Principles of microRNA-target recognition[J].PLoS Biology,2005,3(3):e85.
[17] LORENZ R,BERNHART S H,ZUSIEDERDISSEN C H,et al.ViennaRNA Package 2.0[J].Algorithms for Molecular Bio-logy,2011,6(1):26.
[18] KENT W J,SUGNET C W,FUREY T S,et al.The human genome browser at UCSC[J].Genome Research,2002,12(6):996-1006.
[19] ALTSCHUL S F,GISH W,MILLER W,et al.Basic local alignment search tool[J].Journal of Molecular Biology,1990,215(3):403-410.
[20] JOHN B,ENRIGHT A J,ARAVIN A,et al.Human microRNA targets[J].PLoS Biology,2004,2(11):e363.
[21] MARAGKAKIS M,ALEXIOU P,PAPADOPOULOS G L,et al.Accurate microRNA target prediction correlates with protein repression levels[J].BMC Bioinformatics,2009,10(1):295.
[22] MENOR M,CHING T,ZHU X,et al.mirMark:a site-level and UTR-level classifier for miRNA target prediction[J].Genome Biology,2014,15(10):500.
[23] FISHER R A,YATES F.Statistical tables for biological,agricultural and medical research[M].London:Oliver and Boyd Ltd,1943.
[24] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[25] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.2012:1097-1105.
[26] COLLOBERT R,WESTON J.A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine Learning.ACM,2008:160-167.
[27] PAN X,SHEN H B.Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks[J].Bioinformatics,2018,34(20):3427-3436.
[28] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[29] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
[30] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-basedlearning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[31] WILLIAMS R J,ZIPSER D.A learning algorithm for continually running fully recurrent neural networks[J].Neural Computation,1989,1(2):270-280.
[32] VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11(12):3371-3408.
[33] ZHANG L,CHEN X,YIN J.Prediction of Potential miRNA-Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder[J].Cells,2019,8(9):1040.
[34] HENDERSON J,LY V,OLICHWIER S,et al.Accurate prediction of boundaries of high resolution topologically associated domains(TADs) in fruit flies using deep learning[J].Nucleic Acids Research,2019,47(13):e78-e78.
[35] YANG Y,ZHOU M,FANG Q,et al.AnnoFly:annotating Drosophila embryonic images based on an attention-enhanced RNN model[J].Bioinformatics,2019,35(16):2834-2842.
[36] NG A.Sparse autoencoder[J].CS294A Lecture Notes,2011,72(2011):1-19.
[37] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[38] CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[J].arXiv:1406.1078,2014.
[39] HE K,ZHANG X,REN S,et al.Deep residual learning for ima-ge recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[40] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958.
[41] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015.
[42] ABADI M,BARHAM P,CHEN J,et al.Tensorflow:A system for large-scale machine learning[C]//12th {USENIX} Symposium on Operating Systems Design and Implementation(OSDI 16).2016:265-283.
[43] PASZKE A,GROSS S,MASSA F,et al.Pytorch:An imperative style,high-performance deep learning library[C]//Advances in neural information processing systems.2019:8026-8037.
[44] TEAM T T D,AL-RFOU R,ALAIN G,et al.Theano:A Python framework for fast computation of mathematical expressions[J].arXiv:1605.02688,2016.
[45] FAN X,KURGAN L.Comprehensive overview and assessment of computational prediction of microRNA targets in animals[J].Briefings in Bioinformatics,2014,16(5):780-794.
[46] LEWIS B P,SHIH I,JONES-RHOADES M W,et al.Prediction of mammalian microRNA targets[J].Cell,2003,115(7):787-798.
[47] KRÜGER J,REHMSMEIER M.RNAhybrid:microRNA target prediction easy,fast and flexible[J].Nucleic Acids Research,2006,34(suppl 2):W451-W454.
[48] KERTESZ M,IOVINO N,UNNERSTALL U,et al.The role of site accessibility in microRNA target recognition[J].Nature Genetics,2007,39(10):1278-1284.
[49] STURM M,HACKENBERG M,LANGENBERGER D,et al.TargetSpy:a supervised machine learning approach for microRNA target prediction[J].BMC Bioinformatics,2010,11(1):292.
[50] BANDYOPADHYAY S,MITRA R.TargetMiner:microRNAtarget prediction with systematic identification of tissue-specific negative examples[J].Bioinformatics,2009,25(20):2625-2631.
[51] DING J,LI X,HU H.TarPmiR:a new approach for microRNA target site prediction[J].Bioinformatics,2016,32(18):2768-2775.
[52] CHENG S,GUO M,WANG C,et al.MiRTDL:A Deep Learning Approach for miRNA Target Prediction[J].IEEE/ACM Transactions on Computational Biology & Bioinformatics,2016,13(6):1161-1169.
[53] LEE B,BAEK J,PARK S,et al.deepTarget:end-to-end learning framework for microRNA target prediction using deep recurrent neural networks[C]//Proceedings of the 7th ACM International Conference on Bioinformatics,Computational Biology,and Health Informatics.2016:434-442.
[54] WEN M,CONG P,ZHANG Z,et al.DeepMirTar:a deep-learning approach for predicting human miRNA targets[J].Bioinformatics,2018,34(22):3781-3787.
[55] PLA A,ZHONG X,RAYNER S.miRAW:A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts[J].PLoS Computational Biology,2018,14(7):e1006185.
[56] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in Neural Information Processing Systems.2014:2672-2680.
[57] GUPTA A,ZOU J.Feedback GAN for DNA optimizes protein functions[J].Nature Machine Intelligence,2019,1(2):105-111.
[58] LIU Q,LV H,JIANG R.hicGAN infers super resolution Hi-C data with generative adversarial networks[J].Bioinformatics,2019,35(14):i99-i107.
[59] TARGONSKI C,SHEALY B T,SMITH M C,et al.Cellular State Transformations using Generative Adversarial Networks[J].arXiv:1907.00118,2019.
[60] YU L,ZHANG W,WANG J,et al.Seqgan:Sequence generative adversarial nets with policy gradient[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017.
[61] MOORE M J,SCHEEL T K H,LUNA J M,et al.miRNA-target chimeras reveal miRNA 3’-end pairing as a major determinant of Argonaute target specificity[J].Nature Communications,2015,6(1):1-17.
[62] KLUM S M,CHANDRADOSS S D,SCHIRLE N T,et al.Helix-7in Argonaute2 shapes the microRNA seed region for rapid target recognition[J].The EMBO Journal,2018,37(1):75-88.
[1] SHAN Mei-jing, QIN Long-fei, ZHANG Hui-bing. L-YOLO:Real Time Traffic Sign Detection Model for Vehicle Edge Computing [J]. Computer Science, 2021, 48(1): 89-95.
[2] HE Yan-hui, WU Gui-xing, WU Zhi-qiang. Domain Alignment Based Object Detection of X-ray Images [J]. Computer Science, 2021, 48(1): 175-181.
[3] ZHUANG Shi-jie, YU Zhi-yong, GUO Wen-zhong, HUANG Fang-wan. Short Term Load Forecasting via Zoneout-based Multi-time Scale Recurrent Neural Network [J]. Computer Science, 2020, 47(9): 105-109.
[4] ZHANG Jia-jia, ZHANG Xiao-hong. Multi-branch Convolutional Neural Network for Lung Nodule Classification and Its Interpretability [J]. Computer Science, 2020, 47(9): 129-134.
[5] ZHU Ling-ying, SANG Qing-bing, GU Ting-ting. No-reference Stereo Image Quality Assessment Based on Disparity Information [J]. Computer Science, 2020, 47(9): 150-156.
[6] YOU Lan, HAN Xue-wei, HE Zheng-wei, XIAO Si-yu, HE Du, PAN Xiao-meng. Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams [J]. Computer Science, 2020, 47(9): 169-174.
[7] CUI Tong-tong, WANG Gui-ling, GAO Jing. Ship Trajectory Classification Method Based on 1DCNN-LSTM [J]. Computer Science, 2020, 47(9): 175-184.
[8] LIU Hai-chao, WANG Li. Graph Classification Model Based on Capsule Deep Graph Convolutional Neural Network [J]. Computer Science, 2020, 47(9): 219-225.
[9] LIANG Zheng-you, HE Jing-lin, SUN Yu. Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition [J]. Computer Science, 2020, 47(8): 227-232.
[10] SUN Yan-li, YE Jiong-yao. Convolutional Neural Networks Compression Based on Pruning and Quantization [J]. Computer Science, 2020, 47(8): 261-266.
[11] LIU Xiao, YUAN Guan, ZHANG Yan-mei, YAN Qiu-yan, WANG Zhi-xiao. Hand Gesture Recognition Based on Self-adaptive Multi-classifiers Fusion [J]. Computer Science, 2020, 47(7): 103-110.
[12] CHENG Zhe, BAI Qian, ZHANG Hao, WANG Shi-pu and LIANG Yu. Improving Hi-C Data Resolution with Deep Convolutional Neural Networks [J]. Computer Science, 2020, 47(6A): 70-74.
[13] HE Lei, SHAO Zhan-peng, ZHANG Jian-hua and ZHOU Xiao-long. Review of Deep Learning-based Action Recognition Algorithms [J]. Computer Science, 2020, 47(6A): 139-147.
[14] SUN Zheng and WANG Xin-yu. Application of Deep Learning in Photoacoustic Imaging [J]. Computer Science, 2020, 47(6A): 148-152.
[15] MA Hai-Jiang. Recommendation Algorithm Based on Convolutional Neural Network and Constrained Probability Matrix Factorization [J]. Computer Science, 2020, 47(6A): 540-545.
Full text



[1] PANG Bo, JIN Qian-kun, HENIGULI·Wu Mai Er and QI Xing-bin. Routing Scheme Based on Network Slicing and ILP Model in SDN[J]. Computer Science, 2018, 45(4): 143 -147 .
[2] ZHU Shu-qin, WANG Wen-hong and LI Jun-qing. Chosen Plaintext Attack on Chaotic Image Encryption Algorithm Based on Perceptron Model[J]. Computer Science, 2018, 45(4): 178 -181 .
[3] HOU Yan-e, KONG Yun-feng and DANG Lan-xue. Greedy Randomized Adaptive Search Procedure Algorithm Combining Set Partitioning for Heterogeneous School Bus Routing Problems[J]. Computer Science, 2018, 45(4): 240 -246 .
[4] QU Zhong and ZHAO Cong-mei. Anti-occlusion Adaptive-scale Object Tracking Algorithm[J]. Computer Science, 2018, 45(4): 296 -300 .
[5] LI Jian-hong, WU Ya-rong and LV Ju-jian. Online Single Image Super-resolution Algorithm Based on Group Sparse Representation[J]. Computer Science, 2018, 45(4): 312 -318 .
[6] HAN Zhao, MIAO Duo-qian, REN Fu-ji. Rough Set Based Knowledge Predicate Analysis of Chinese Knowledge Based Question Answering[J]. Computer Science, 2018, 45(6): 183 -186 .
[7] CHEN Jin-yin, XIONG Hui, ZHENG Hai-bin. Parameters Optimization for SVM Based on Particle Swarm Algorithm[J]. Computer Science, 2018, 45(6): 197 -203 .
[8] CHEN Yu-jin, LI Xu-wu, XING Rui-kang. Three-way Decisions Model Based on Evidence Theory[J]. Computer Science, 2018, 45(6): 241 -246 .
[9] LV Ju-jian, ZHAO Hui-min, CHEN Rong-jun, LI Jian-hong. Unsupervised Active Learning Based on Adaptive Sparse Neighbors Reconstruction[J]. Computer Science, 2018, 45(6): 251 -258 .
[10] XU Li-li, DONG Yi-hong, PAN Jian-fei and CHEN Hua-hui. Survey of Graph Sparsification Algorithms for Complex Networks[J]. Computer Science, 2018, 45(5): 24 -30 .