Computer Science ›› 2020, Vol. 47 ›› Issue (6): 201-209.doi: 10.11896/jsjkx.200200117

• Artificial Intelligence • Previous Articles     Next Articles

Information Cascade Prediction Model Based on Hierarchical Attention

ZHANG Zhi-yang, ZHANG Feng-li, CHEN Xue-qin, WANG Rui-jin   

  1. School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu610054,China
  • Received:2020-02-26 Online:2020-06-15 Published:2020-06-10
  • About author:ZHANG Zhi-yang,born in 1997,postgraduate,is a member of China Computer Federation.His main research interests include machine learning,data mining and cascade prediction.
    ZHANG Feng-li,born in 1963,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.Her main research interests include network security and network engineering,cloud computing and big data and machine learning.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(61802033,61472064,61602096),Sichuan Science and Technology Program (2018GZ0087,2019YJ0543),Chinese Postdoctoral Science Foundation(2018M643453),Guangdong Provincial Key Laboratory Project(2017B030314131) and Network and Data Security Key Laboratory of Sichuan Province Open Issue(NDSMS201606).

Abstract: Information cascade prediction is a research hotspot in the field of social network analysis.It learns the propagation mode of information in online social media through the diffusion sequence and topology map of the information cascade.Most current models for solving this task are based on recurrent neural networks and only consider information cascading time series structure information or spatial structure information inside sequences,and cannot learn topological relationships between sequences.And the existing cascade graph structure learning methods cannot assign different weights to the neighbors of the nodes,resulting in poor association learning between the nodes.In response to the above problems,this paper proposes an information cascade sampling method based on node representation,which models the information cascade as a node representation rather than a sequence representation.This paper also proposes an information cascade prediction model based on hierarchical attention network (ICPHA),which learns the time series structure information of the node sequence through a recurrent neural network layer with self-attention mechanism,and learns the spatial structure information between node representations through a multi-head attention mechanism.By this way,ICPHA jointly models the structural information of the information cascade through a hierarchical attention network.ICPHA has achieved leading prediction results on Twitter,Memes,and Digg,and has good generalization ability.

Key words: Online social media, Deep learning, Recurrent neural network, Graph representation learning, Information cascade prediction, Multi-head attention mechanism

CLC Number: 

  • TP183
[1]ZHU X,JIA Y,NIE Y P,et al.Event Propagation Analysis on Microblog[J].Journal of Computer Research and Development,2015,52(2):437-444.
[2]CHENG J,ADAMIC L,DOW P A,et al.Can cascades be predicted?[C]//Proceedings of the 23rd International Conference on World Wide Web.ACM,2014:925-936.
[3]JIANG Y,COUNTS S.Predicting the speed,scale,and range of information diffusion in twitter[C]//Fourth International AAAI Conference on Weblogs and Social Media.2010.
[4]GOLUB B,JACKSON M O.Using selection bias to explain the observed structure of internet diffusions[J].Proceedings of the National Academy of Sciences,2010,107(24):10833-10836.
[5]LESKOVEC J.The Dynamics of Viral Marketing[J].Acm Transactions on the Web,2005,1(1):228-237.
[6]DOW A P,ADAMIC L A,FRIGGERI A.The Anatomy of Large Facebook Cascades[C]//ICWSM.2013.
[7]KUMAR R,MAHDIAN M,MCGLOHON M.Dynamics of conversations[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2010:553-562.
[8]CHENG L,MA J Q,GUO X X,et al.Deepcas:An end-to-end predictor of information cascades[C]//Proceedings of the 26th international conference on World Wide Web.International World Wide Web Conferences Steering Committee,2017:577-586.
[9]WANG X S,MA S Z.Method of Weibo User Influence Calculation Integrating Users’ Own Factors and Interaction Behavior[J].Computer Science,2020,47(1):96-101.
[10]BENGIO Y,DUCHARME R,VINCENT P,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3(Feb):1137-1155.
[11]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.2012:1097-1105.
[12]QIU J Z,TANG J,MA H,et al.Deepinf:Social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2018:2110-2119.
[13]VELIKOVI P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
[14]GUO R C,SHAKARIAN P.A comparison of methods for cascade prediction[C]//Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.IEEE,2016:591-598.
[15]BAO P,SHEN H W,JIN X L,et al.Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes[C]//Proceedings of the 24th International Conference on World Wide Web.ACM,2015:9-10.
[16]KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2003:137-146.
[17]CAO Q,SHEN H W,CEN K T,et al.Deephawkes:Bridging the gap between prediction and understanding of information cascades[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.ACM,2017:1149-1158.
[18]CHEN X Q,ZHOU F,ZHANG K P,et al.Information Diffusion Prediction via Recurrent Cascades Convolution[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE).IEEE,2019:770-781.
[19]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[20]TONG H H,FALOUTSOS C,PAN J Y.Fast random walk with restart and its applications[C]//Sixth International Conference on Data Mining (ICDM’06).IEEE,2006:613-622.
[21]MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[C]//Advances in Neural Information Processing Systems.2014:2204-2212.
[22]WANG Z T,CHEN C Y,LI W J.A Sequential Neural Information Diffusion Model with Structure Attention[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.ACM,2018:1795-1798.
[23]ISLAM M R,MUTHIAH S,ADHIKARI B,et al.DeepDiffuse:Predicting the ‘Who’ and ‘When’ in Cascades[C]//2018 IEEE International Conference on Data Mining (ICDM).IEEE,2018:1055-1060.
[24]GAO S,MA J,CHEN Z M.Modeling and predicting retweeting dynamics on microblogging platforms[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining.ACM,2015:107-116.
[25]LESKOVEC J,BACKSTROM L,KLEINBERG J.Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2009:497-506.
[26]TAD H,KRISTINA L.Social Dynamics of Digg[C]//Proceedings of the Fourth International Conference on Weblogs and Social Media(ICWSM 2010).Washington,DC,USA,2010:23-26.
[27]WANG J,ZHENG V,LIU Z M,et al.Topological recurrentneural network for diffusion prediction[C]//2017 IEEE International Conference on Data Mining (ICDM).IEEE,2017:475-484.
[1] LI Ya-nan, HU Yu-jia, GAN Wei, ZHU Min. Survey on Target Site Prediction of Human miRNA Based on Deep Learning [J]. Computer Science, 2021, 48(1): 209-216.
[2] WANG Rui-ping, JIA Zhen, LIU Chang, CHEN Ze-wei, LI Tian-rui. Deep Interest Factorization Machine Network Based on DeepFM [J]. Computer Science, 2021, 48(1): 226-232.
[3] YU Wen-jia, DING Shi-fei. Conditional Generative Adversarial Network Based on Self-attention Mechanism [J]. Computer Science, 2021, 48(1): 241-246.
[4] TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267.
[5] DING Yu, WEI Hao, PAN Zhi-song, LIU Xin. Survey of Network Representation Learning [J]. Computer Science, 2020, 47(9): 52-59.
[6] ZHUANG Shi-jie, YU Zhi-yong, GUO Wen-zhong, HUANG Fang-wan. Short Term Load Forecasting via Zoneout-based Multi-time Scale Recurrent Neural Network [J]. Computer Science, 2020, 47(9): 105-109.
[7] HE Xin, XU Juan, JIN Ying-ying. Action-related Network:Towards Modeling Complete Changeable Action [J]. Computer Science, 2020, 47(9): 123-128.
[8] YE Ya-nan, CHI Jing, YU Zhi-ping, ZHAN Yu-liand ZHANG Cai-ming. Expression Animation Synthesis Based on Improved CycleGan Model and Region Segmentation [J]. Computer Science, 2020, 47(9): 142-149.
[9] DENG Liang, XU Geng-lin, LI Meng-jie, CHEN Zhang-jin. Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting [J]. Computer Science, 2020, 47(9): 163-168.
[10] YOU Lan, HAN Xue-wei, HE Zheng-wei, XIAO Si-yu, HE Du, PAN Xiao-meng. Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams [J]. Computer Science, 2020, 47(9): 169-174.
[11] BAO Yu-xuan, LU Tian-liang, DU Yan-hui. Overview of Deepfake Video Detection Technology [J]. Computer Science, 2020, 47(9): 283-292.
[12] YUAN Ye, HE Xiao-ge, ZHU Ding-kun, WANG Fu-lee, XIE Hao-ran, WANG Jun, WEI Ming-qiang, GUO Yan-wen. Survey of Visual Image Saliency Detection [J]. Computer Science, 2020, 47(7): 84-91.
[13] WANG Wen-dao, WANG Run-ze, WEI Xin-lei, QI Yun-liang, MA Yi-de. Automatic Recognition of ECG Based on Stacked Bidirectional LSTM [J]. Computer Science, 2020, 47(7): 118-124.
[14] LIU Yan, WEN Jing. Complex Scene Text Detection Based on Attention Mechanism [J]. Computer Science, 2020, 47(7): 135-140.
[15] ZHANG Zhi-yang, ZHANG Feng-li, TAN Qi, WANG Rui-jin. Review of Information Cascade Prediction Methods Based on Deep Learning [J]. Computer Science, 2020, 47(7): 141-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[2] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[3] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[4] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[5] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[6] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[7] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[8] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[9] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .
[10] WANG Zhen-chao, HOU Huan-huan and LIAN Rui. Path Optimization Scheme for Restraining Degree of Disorder in CMT[J]. Computer Science, 2018, 45(4): 122 -125 .