Computer Science ›› 2017, Vol. 44 ›› Issue (10): 113-116.doi: 10.11896/j.issn.1002-137X.2017.10.022

Previous Articles     Next Articles

Node Forwarding Strategy with Collision Estimation in Urban Vehicular Ad Hoc Networks

HU Chang-jun and YUAN Shu-jie   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Aiming at the problem of high collision rate in message transmission,low transmitting efficiency and unreliable routing caused by the uneven distribution of vehicles in urban vehicular ad hoc networks,a node forwarding strategy with collision estimation (NFCE) was proposed based on irresponsible forwarding (IF) algorithm.Firstly,the vehicular node receiving message from others determines the probability of collision in forwarding message.If the probability is below a certain threshold,then the node determines its own forwarding probability on the basis of the node density around it,its communication radius and its distance from the source node.Finally the node with higher forwarding pro-bability has more priority to forward the message.Simulation results show that,compared with other typical algorithms,the NFCE algorithm reduces the rate of transmission collisions,its routing has higher efficiency and reliability than others especially in large vehicle density of urban environments,so NFCE is more suitable for application in urban environment.

Key words: Vehicular Ad hoc networks,Node forwarding,Collision estimation,Node density

[1] JACQUET P,MUHLETHALER P,CLAUSEN T,et al.Optimized link state routing protocol for ad hoc networks[C]∥IEEE International Multi Topic Conference (IEEE INMIC 2001).2001:62-68.
[2] JOHNSON D B,MALTZ D A,BROCH J,et al.DSR:The dynamic source routing protocol for multi-hop wireless ad hoc networks [M]∥Ad Hoc Networking.Addison-wesley Longman Publishing Co.Inc..2001:139-172.
[3] KARP B,KUNG H T.GPSR:greedy perimeter stateless routing for wireless networks[C]∥Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MOBI-COM’00).2000:243-254.
[4] SCHNAUFER S,EFFELSBERG W.Position-based unicast routing for city scenarios[C]∥Proceedings of the 9th International Symposium on a World of Wireless,Mobile and Multimedia Networks (WoW-MoM’08).2008:1-8.
[5] CHENG P C,LEE K C,GERLA M,et al.GeoDTN+Nav:Geographic DTN Routing with NavigatorPrediction for Urban Vehicular Environments[J].Mobile Networks & Applications,2010,5(1):61-82.
[6] MOUZNA J,UPPOOR S,BOUSSEDJRA M,et al.Densityaware routing using road hierarchy for vehicular networks [C]∥Proceedings of IEEE/INFORMS International Conference on Service Operations,Logistics and Informatics (SOLr09).2009:443-448.
[7] JERBI M,SENOUCI S M,MERAIHI R,et al.An improved vehicular ad hoc routing protocol for city environments[C]∥Proceedings of IEEE International Conference on Communications (ICC’07).2007:3972-3979.
[8] PANICHPAPIBOON S,FERRARI G.Irresponsible Forwarding[C]∥Proc.of 8th International Conference on ITS Telecommunications.Phuket,2008:311-316.
[9] SONG C,LIU M,GONG H G,et al.Distributed Real-Time Information Based Routing Protocol in Vehicular Ad-Hoc Networks[J].Journal of Software,2011,2(3):466-480.(in Chinese)宋超,刘明,龚海刚,等.基于分布式实时信息的车载网络路由协议[J].软件学报,2011,2(3):466-480.
[10] LOCHERT C,MAUVE M,FUSSIER H,et al.Geographic routing in city scenarios[J].SIGMOBILE Mob.Comput.Commun.Rev.,2005,9(1):69-72.
[11] LEONTIADIS I,MASCOLO C.GeOpps:Geographical Oppor-tunistic Routing for Vehicular Networks [C]∥Proceedings of IEEE International Symposium on a World of Wireless,Mobile and Multimedia Networks (WoWMoM’07).2007:1-6.
[12] LEONTIADIS I,COSTA P,MASCOLO C.Extending AccessPoint Connectivity through Opportunistic Routing in Vehicular Networks [C]∥IEEE International Conference on Computer Communication-s(INFOCOM'lO).2010:486-490.
[13] BISWAS S,MORRIS R.ExOR:opportunistic multi-hop routing for wireless networks[C]∥Proceedings of the Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications Review.2005:133-144.
[14] JIANG H T,ZHANG H,LI Q M.Research on routing protocol of vehicular delay-tolerant networks[J].Journal on Communications,2013,34(3):76-84.(in Chinese) 姜海涛,张宏,李千目.车载时延容忍网络路由协议研究[J].通信学报,2013,34(3):76-84.
[15] GERLA M,WU C C,PAU G,et al.Content distribution inVANETs[J].Vehicular Communications,2014,1(1):3-12.
[16] DUA A,KUMAR N,BAWA S.A systematic review on routing protocols for Vehicular Ad Hoc Networks[J].Vehicular Communications,2014,1(1):33-52.
[17] RASMEET S,NEERAJ S,JODEL J.Clustering in vehicular ad hoc networks:Taxonomy,challenges and solutions[J].Vehicular Communications,2014,1(3):134-152.
[18] CHEN J H.Research on Several Key Technologies of In-vehicle network[D].Changchun:Jilin University,2013.(in Chinese) 陈筠翰.车载网络的若干关键技术研究[D].长春:吉林大学,2013.
[19] PENG Y L,YIN H,YU P.Layered urban VANETs routingprotocol on bus mobile assistant[J].Journal of Software,2014,5(s1):75-84.(in Chinese) 彭雅丽,尹红,喻鹏.公交移动协助城市车载网络分层路由协议[J].软件学报,2014,5(s1):75-84.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!