Computer Science ›› 2020, Vol. 47 ›› Issue (9): 169-174.doi: 10.11896/jsjkx.190800060

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams

YOU Lan1, HAN Xue-wei1, HE Zheng-wei2,3,4, XIAO Si-yu1, HE Du5, PAN Xiao-meng1   

  1. 1 School of Computer Science & Information Engineering,Hubei University,Wuhan 430062,China
    2 School of Navigation,Wuhan University of Technology,Wuhan 430063,China
    3 Hubei Key Laboratory of Inland Shipping Technology,Wuhan University of Technology,Wuhan 430063,China
    4 National Engineering Research Center for Water Transportation Safely,Wuhan 430063,China
    5 Hubei Engineering Research Center for Education Information,Wuhan 430071,China
  • Received:2019-08-24 Published:2020-09-10
  • About author:YOU Lan,born in 1978,Ph.D,associate professor.Her main research interests includespatio-temporal data,deep learning and knowledge engineering.
    HE Zheng-wei,born in 1977, Ph.D,associated professor.His main research interests include traffic big data processing and mining, maritime information systems and traffic environment simulation,artificial intelligence application technology,deep learning and smart navigation.
  • Supported by:
    Hubei Province Natural Science Foundation Item (2019CFB757),Open Fund of National Engineering Research Center for Water Transport Safety (A2019011),Fund of Hubei Key Laboratory of Inland Shipping Technology (NHHY2017001),Key Project of Scientific Research Plan of Hubei Ministry of Education (D20161001) and Fundamental Research Funds for the Central Universities (2019III050GX,2019III007GX).

Abstract: Using deep learning to predict the vessel trajectory is of great significance for the intelligent shipping.AIS (Automatic Identification System) data contain a huge amount of information about vessel trajectory features.The prediction of ship trajectories based on AIS data becomes one of the research hotspots in the intelligent shipping realm.In this paper,an improved sequence-to-sequence model using AIS data streams is proposed for the short-term vessel trajectory prediction.The proposed model utilizes a GRU network to encode the historical spatio-temporal sequence into a context vector,which not only preserves the sequential relationship among those trail points,but also is helpful for the alleviation of the gradient descent problem.Meanwhile,a GRU network is used as a decoder to output target trail points sequence.In this paper,a large scale of real AIS data are used in the experiments.The Chongqing section and the Wuhan section of the Yangzi River are selected as typical experimental areas,which is for the evaluation of the validity and applicability of the model.Experimental results show that the proposed model improves the accuracy and efficiency of short-term ship trajectory prediction.The proposed model provides an effective solution for the intelligent shipping warning in the future.

Key words: Automatic identification system, Recurrent neural network, Sequence-to-sequence model, Spatio-temporal data mining, Trajectory prediction

CLC Number: 

  • TP183
[1] PALLOTTA G,VESPE M,BRYAN K.Vessel Pattern Know-ledge Discovery from AIS Data:A Framework for Anomaly Detection and Route Prediction[J].Entropy,2013,15(6):2218-2245.
[2] IALA.An Overview of AIS[M/OL].[2019-08-31].https://www.iala-aism.org/product/an-overview-of-ais-1082/.
[3] TU E,ZHANG G,RACHMAWATI L,et al.Exploiting AIS data for intelligent maritime navigation:a comprehensive survey from data to methodology[J].IEEE Transactions on Intelligent Transportation Systems,2017,19:1559-1582.
[4] PERERA L P,OLIVEIRA P,SOARES C G.Maritime TrafficMonitoring Based on Vessel Detection,Tracking,State Estimation,and Trajectory Prediction[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(3):1188-1200.
[5] CAVENEY D.Numerical integration for future vehicle pathprediction[C]//Proceedings of the 2007 American Control Conference.IEEE,2007:3906-3912.
[6] SEMERDJIEV E,MIHAYLOVA L,SCIENCE C.Variable-and fixed-structure augmented interacting multiple model algorithms for manoeuvring ship tracking based on new ship models[J].International Journal of Applied Mathematics,2000,10(3):591-604.
[7] GREWAL M S.Kalman filtering[M].Springer,2011.
[8] PERERA L P,SOARES C G.Ocean vessel trajectory estimation and prediction based on extended kalman filter[C]//Proceedings of the The Second International Conference on Adaptive and Self-Adaptive Systems and Applications.Citeseer,2020:14-20.
[9] QUAN B,YANG B C.Prediction Model of Ship TrajectoryBased on LSTM[J].Computer Science,2018,45(S2):136-141.
[10] NGUYEN D D,VAN C L,ALI M I.Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid[C]//Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems.Hamilton,New Zealand,2018:258-261.
[11] ALAHI A,GOEL K,RAMANATHAN V,et al.Social lstm:Human trajectory prediction in crowded spaces[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:961-971.
[12] FFRANCISCO A,NAVARRO F,et al.Predicting aircraft trajectory:U.S,9020662[P].2015-04-28.http://www.freepatentsonline.com/9020662.html.
[13] WIEST J,HÖFFKEN M,KRESEL U,et al.Probabilistic trajectory prediction with Gaussian mixture models[C]//Proceedings of the 2012 IEEE Intelligent Vehicles Symposium.IEEE,2012:141-146.
[14] YAN Z X.Traj-ARIMA:a spatial-time series model for net-work-constrained trajectory[C]//Proceedings of the Procee-dings of the Third International Workshop on Computational Transportation Science.ACM,2010:11-16.
[15] ZHENG Y.Trajectory data mining:an overview[J].ACMTransactions on Intelligent Systems Technology,2015,6(3):29.
[16] CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al.Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).2014.
[17] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems.NIPS,2014:3104-3112.
[18] KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//Proceedings of the the 3rd International Conference for Learning Representations.ICLR,2015:1139-1154.
[19] SRIVASTAVA N,HINTON G E,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15:1929-1958.
[1] LI Rong-fan, ZHONG Ting, WU Jin, ZHOU Fan, KUANG Ping. Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation [J]. Computer Science, 2022, 49(8): 33-39.
[2] PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247.
[3] YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng. SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion [J]. Computer Science, 2022, 49(6A): 256-260.
[4] YU Xin, LIN Zhi-liang. Novel Neural Network for Dealing with a Kind of Non-smooth Pseudoconvex Optimization Problems [J]. Computer Science, 2022, 49(5): 227-234.
[5] AN Xin, DAI Zi-biao, LI Yang, SUN Xiao, REN Fu-ji. End-to-End Speech Synthesis Based on BERT [J]. Computer Science, 2022, 49(4): 221-226.
[6] SHI Yu-tao, SUN Xiao. Conversational Comprehension Model for Question Generation [J]. Computer Science, 2022, 49(3): 232-238.
[7] LI Hao, CAO Shu-yu, CHEN Ya-qing, ZHANG Min. User Trajectory Identification Model via Attention Mechanism [J]. Computer Science, 2022, 49(3): 308-312.
[8] XIAO Ding, ZHANG Yu-fan, JI Hou-ye. Electricity Theft Detection Based on Multi-head Attention Mechanism [J]. Computer Science, 2022, 49(1): 140-145.
[9] ZENG Wei-liang, CHEN Yi-hao, YAO Ruo-yu, LIAO Rui-xiang, SUN Wei-jun. Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections [J]. Computer Science, 2021, 48(6A): 334-341.
[10] ZENG You-yu, XIE Qiang. Fault Prediction Method Based on Improved RNN and VAR for Ship Equipment [J]. Computer Science, 2021, 48(6): 184-189.
[11] WANG Xi, ZHANG Kai, LI Jun-hui, KONG Fang, ZHANG Yi-tian. Generation of Image Caption of Joint Self-attention and Recurrent Neural Network [J]. Computer Science, 2021, 48(4): 157-163.
[12] CHEN Qian, CHE Miao-miao, GUO Xin, WANG Su-ge. Recurrent Convolution Attention Model for Sentiment Classification [J]. Computer Science, 2021, 48(2): 245-249.
[13] LYU Ming-qi, HONG Zhao-xiong, CHEN Tie-ming. Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events [J]. Computer Science, 2021, 48(2): 264-270.
[14] LI Ai-ling, ZHANG Feng-li, GAO Qiang, WANG Rui-jin. Trajectory Next Footprint Prediction Model Based on Adaptive Timestamp and Multi-scale Feature Extraction [J]. Computer Science, 2021, 48(11A): 191-197.
[15] LI Ya-nan, HU Yu-jia, GAN Wei, ZHU Min. Survey on Target Site Prediction of Human miRNA Based on Deep Learning [J]. Computer Science, 2021, 48(1): 209-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!