基于零空间分析的张量局部 Fisher 判别方法

郑建炜 蒋一波 王万良

(浙江工业大学计算机学院 杭州 310023)

摘 要 结合局部 Fisher 判别、张量子空间学习和零空间分析等技术的优点,提出了一种基于零空间分析的张量局 部 Fisher 判别算法,其特点包括:i)引入类间判别信息,对局部 Fisher 判别技术进行调整,提升了算法识别性能并且 降低了计算时间复杂度;ii)通过张量型降维思想对输入样本进行双边投影变换而非单边投影,获得了更高的信息压 缩率;iii)随着训练样本量的变化,可采用基于零空间分析的求解方法和传统的直接迭代更新计算方法。通过 ORL、 Yale 和 ExYaleB 3 个人脸数据库验证了所提算法的性能。

关键词 Fisher 判别分析,零空间,局部保持投影,张量子空间分析

中图法分类号 TP391.41 文献标识码 A

Tensor Local Fisher Discriminant with Null Space Analysis

ZHENG Jian-wei JIANG Yi-bo WANG Wan-liang (School of Computer, Zhejiang University of Technology, Hangzhou 310023, China)

Abstract The tensor local fisher discriminant algorithm with null space analysis or NSTLFDA for short was proposed which incorporates the merits of three techniques, i. e., tensor based methods, local Fisher discriminant analysis, and null space analysis. The main features of our implementation include: (i) local Fisher discriminant analysis is improved by inter-class discriminant information for better recognition performance and reduces time complexity, ii) the tensor based method employs two-sided transformations rather than single-sided one, and yields higher compression ratio, iii) while TLFDA directly uses an iterative procedure to calculate the optimal solution of two transformation matrices, the NSTLFDA method takes the advantages of null space information when the training samples number is less than the dimensionality of the vector samples. The effectiveness of our new method was demonstrated by the ORL, Yale, and ExY-aleB face databases.

Keywords Fisher discriminant analysis, Null space, Local preservation projection, Tensor subspace analysis

1 引言

有监督或无监督的子空间分析技术^[1]已经广泛应用于机 器视觉和模式识别等人工智能领域。在具体的应用如人脸识 别中,2 维图像样本往往要先依行或依列连接成一个一维向 量^[2],其维数很高,不仅包含大量的冗余信息,而且增加了后 续处理的计算量,因此,对其进行降维操作,使之在保持数据 类内紧凑性的同时获得更大的类间判别散度成为一种合理的 特征预处理方法。主成分分析方法(Principal Component Analysis,PCA)^[3]和线性 Fisher 判别(Linear Fisher Discriminant,LFD)^[4]是两种应用最为广泛的向量型降维技术,PCA 属于无监督投影技术,并不适合于分类问题;而 LDA 通过数 据类别信息,以类内散度最小和类间散度最大为目标进行最 佳投影矩阵求解,分类效果较优。然而,PCA 和 LDA 仅能够 揭示数据的全局欧氏结构,却无法对嵌入在高维数据中的低 维子流形进行有效挖掘,并且在实际应用中,LDA 还经常遇 到小样本问题^[5],即输入数据量远小于数据维度时的类内散 度矩阵奇异性问题。为提升算法性能并解决所存在的问题, 已提出了不少基于 PCA 和 LDA 的改进型算法,包括基于概 率的 PCA^[6]、基于概率的 LDA^[7]、几何均值子空间学习法^[8]、 共同判别矢量法^[9]等等。

不同于上述向量型 PCA 和 LDA 算法,二维 PCA(2 Dimensional PCA,2DPCA)^[10]直接通过二维图像矩阵进行子空 间特征的提取,省略了向量化过程。由于二维图像方差矩阵 的规模远远小于传统的向量型方差矩阵,因此 2DPCA 的计 算时间复杂度也远小于向量型 PCA。然而,2DPCA 更适合 于数据表达而非数据分类。基于此,Li 和 Yuan^[11]将矩阵数 据引入传统 LDA 算法并指出了二维 LDA(2 Dimensional LDA,2DLDA)。尽管有学者提出 2DLDA 并非具有绝对的优 越性^[12],但一般情况下,它不仅具有较 LDA 更优的识别性 能,同时其 2 维的类内散度矩阵往往是非奇异的,解决了小样 本问题。2DPCA 和 2DLDA 的缺陷是只对原始图像数据进 行依列或依行的单边降维变换,导致投影后的数据仍具有较 多冗余的特征系数。近来,不少研究者提出了多边张量的子

到稿日期:2012-06-19 返修日期:2012-09-28 本文受国家自然科学基金(61070043),浙江省自然科学基金(LQ12F03011),浙江工业大学校 自然科学基金(2011XY020)资助。

郑建炜(1982一),男,博士,讲师,主要研究方向为流形学习、模式识别,E-mail:zjw@zjut.edu.cn。

空间分析技术。Tao 等人^[13]提出张量判别分析方法并将其 应用于步态识别。Wang 等人^[14]提出了双边 2DLFD (Bilateral 2DLFD, B2DLFD),也可称之为张量 LFD(Tensor LFD, TLFD)。Qing 等人^[15]采用3阶张量进行视频运动对象的跟 踪。Wu 等人[16]则采用更高阶(n 阶)张量对通过 Gabor 分析 后的语音信号进行特征提取操作。PCA、LDA 及其相应的 2D 或高阶张量扩展技术并不能够对数据局部流形进行有效 挖掘。He等人^[17]以在投影空间中尽量保持原高维数据的局 部近邻分布结构为宗旨进行降维分析,提出局部保持投影算 法(Locality Preserving Projection, LPP), 之后, 又通过张量技 术将 LPP 扩展为张量子空间分析算法 (Tensor Subspace Analysis, TSA)^[18]。此外, Yu^[19]则将 LPP 扩展至 2DLPP, 其 中直接通过矩阵图像数据进行样本局部结构的构建,并目引 入了类别信息来提升算法的判别能力。Yan 等人^[20] 通过引 入谱图理论,结合局部流形挖掘和类间判别思想,构建了统一 的数据降维框架,提出了边缘 Fisher 分析算法 (Marginal Fisher Analysis, MFA) 并将之扩展为张量 MFA (Tensor MFA, TMFA)。在此框架下,已提出了不少更新的子空间学 习方法,包括正交张量近邻保持嵌入方法^[21]、正交局部 Spline 判别投影法^[22]和流形弹性网算法^[23]等等。而 Sugiyama^[24] 直接结合 LFD 和 LPP 的优点,提出了局部 Fisher 判别分析 (Local Fisher Discriminant Analysis, LFDA), 它能够更好地 适应具有多簇和类间交叉分布的数据。Zhang 等人^[25]将 LF-DA进行直接张量化,提出张量局部线性判别分析算法(Tensor Locally Linear Discriminant Analysis, TLLDA), 进一步提 升了性能。

在 Yan 等人[20] 所提的子空间分析框架中,向量型降维方 法经常会遇到小样本问题,使得目标泛函中的分母矩阵具有 奇异性,无法进行逆矩阵求取,其常见的解决方法都采用矩阵 正则化[26]等去除相应矩阵的零空间。然而实际上,分母矩阵 零空间中包含丰富的判别信息,采用直接去除的方法并不合 理,直接 LDA 算法[27] 和对偶 LDA 算法[28] 都通过引入零空 间思想进行最佳投影矩阵求解,效果优于传统 LDA 方法。此 外,Chu和 Thye^[29]基于零空间提出快速的 LDA 实现。Yang 等人^[30]则利用零空间求解 LPP 算法并应用于人脸识别,两 者分别获得了识别速率和识别性能的提升。张量型算法包括 TLLDA 等,它们能够自然地规避小样本问题,但其实现过程 需要采用迭代的双边投影矩阵更新操作,都直接通过广义的 特征分解技术进行算法求解,最终的投影矩阵无法达到稳定 解^[31]。基于此,Xu等人^[31]结合向量型类内散度矩阵的零空 间和张量型类间散度矩阵的秩空间提出了收敛的子空间分析 方法,从而在得到投影矩阵稳定解的同时也提升了算法判别 性能。

基于上述讨论,本文采用二阶张量子空间分析进行人脸 识别应用,首先调整了TLLDA 算法的目标泛函和计算过程, 其称为张量局部Fisher 判别分析算法(Tensor Local Fisher Discriminant Analysis,TLFDA)。然后引入零空间分析技术 进行算法求解,提出零空间TLFDA 算法(Null Space TLF-DA,NSTLFDA),其优点包括:(a)在保持类内散度矩阵结构 的基础上,通过样本均值矢量削减了TLLDA 算法的计算量; (b)通过克罗内克积求解TLFDA,计算过程更为清晰;(c)根 据训练样本数量的不同,可选择NSTLFDA 求解方法和直接 迭代TLFDA 求解方法,提升了算法的适应能力。 本文第2节简述相关的 LFDA 算法和 TLLDA 算法;第 3节引出 TLFDA 算法,并分别给出了直接 TLFDA 求解和 NSTLFDA 求解方法,同时进行了复杂度分析;第4节通过 ORL、Yale 和 EYaleB 3 个人脸图像库进行了算法最优参数选 择和性能对比;最后对本文的工作进行了总结并给出了后续 工作展望。

2 相关工作

2.1 子空间判别分析简述

给定 N 个张量型表达的训练样本为:

 $X = \{X_{1}^{c}, X_{2}^{c}, \dots, X_{N_{1}}^{i}, X_{1}^{c}, X_{2}^{c}, \dots, X_{N_{2}}^{c}, \dots, X_{1}^{c}, X_{2}^{c}, \dots, X_{N_{c}}^{c}\}$ (1) 式中, $X_{i}^{c} \in \mathbb{R}^{I_{1} \times I_{2}}$ 是第 c 类样本中第 i 个数据的表达形式,样

本类别总数为 C, N_c 表示第 c 类训练样本数, 且存在 $N = N_1$ + N_2 +···+ N_c 。相应的子空间投影即寻找最佳的变换矩阵 $U \in R^{I_1 \times L_1}$ 和 $V \in R^{I_2 \times L_2}$,将原数据变换至:

 $Y_i = U^T X_i V$ (2) 使得 $Y_i \in R^{L_1 \times L_2}$ 具有最优的可识别能力,其中 $L_1 < I_1$ 和 L_2

< I_2 是子空间的数据维数。 在向量型降维分析中,样本 X_i 首先需要展开为 $x_i \in$

 $R^{m\times 1}$,其中 $m=I_1\times I_2$,相应的子空间变换即寻找最佳的变换 矩阵 $U\in R^{m\times L_1}$,将原数据投影至:

$$Y_i = U^{\mathrm{T}} X_i \tag{3}$$

使得 $Y_i \in R^{L_1 \times 1}$ 具有最佳的分类效果。

2.2 局部 Fisher 判别分析

分别将局部类内和局部类间散度矩阵表达为 S_w 和 S_b:

$$S_{w} = \frac{1}{2} \sum_{i,j=1}^{N} \widetilde{w}_{ij}^{w} || x_{i} - x_{j} ||^{2}$$
(4)

$$S_b = \frac{1}{2} \sum_{i,j=1}^{N} \widetilde{w}_i^b \parallel x_i - x_j \parallel^2$$
(5)

式中, || · || 代表欧式范数, wij 和 wig 分别为:

$$\widetilde{w}_{ij}^{w} = \begin{cases} A_{ij}/N_c, & \text{if } c(x_i) = c(x_j) \\ 0, & \text{if } c(x_i) \neq c(x_i) \end{cases}$$
(6)

$$\widetilde{u}_{ij}^{k} = \begin{cases} A_{ij} \left(\frac{1}{N-1} \right), & \text{if } c(x_i) = c(x_j) \\ \frac{1}{N}, & \text{if } c(x_i) \neq c(x_j) \end{cases}$$
(7)

式中, A_{ij} 表示样本 x_i 和 x_j 之间的相似度,一般采用热核函数 计算得到^[24]。LFDA 最佳投影矩阵可通过式(8)计算得到:

$$U_{LFDA} = \underset{U \in \mathcal{R}^{m \times L_1}}{\operatorname{argmax}} \left[\frac{\operatorname{tr}(U^{\mathrm{T}} S_b U)}{\operatorname{tr}(U^{\mathrm{T}} S_w U)} \right]$$
(8)

LFDA 在继承 LFD 全局欧式判别能力的同时,又融入了 LPP 局部流形保持思想,获得了分类性能的提升,并且能够 更好地适应多种不同类型的训练样本,包括多簇分布和具有 类间交叉分布的各类数据。

2.3 张量局部线性判别分析

在 LFDA 的基础上, TLLDA 采用二阶张量进行样本表达, 其目标泛函描述为^[25]:

$$\max_{U,V} \frac{\operatorname{tr}(\sum_{i,j=1}^{N} w_{ij}^{k} \parallel U^{\mathrm{T}} X_{i} V - U^{\mathrm{T}} X_{j} V \parallel_{F}^{2})}{\operatorname{tr}(\sum_{i=1}^{N} w_{ij}^{k} \parallel U^{\mathrm{T}} X_{i} V - U^{\mathrm{T}} X_{j} V \parallel_{F}^{2})}$$
(9)

式中, $\|\cdot\|_{F}^{2}$ 表示矩阵的 F 范数, w_{i}^{*} 和 w_{i}^{0} 的表达形式分别 是:

$$w_{ij}^{\mu} = \begin{cases} A_{ij} / \sqrt{N}, & \text{if } c(x_i) = c(x_j) \\ 0, & \text{if } c(x_i) \neq c(x_j) \end{cases}$$
(10)

• 12 •

$$\omega_{ij}^{k} = \begin{cases} 1/\sqrt{N}, & \text{if } c(x_{i}) \neq c(x_{j}) \\ A_{ij}(1/\sqrt{2N} - 1/\sqrt{N}), & \text{else} \end{cases}$$
(11)

式(9)中的U和V都需要优化求解,两者互相关联,无法 直接实现闭式求解。因此 TLLDA 采用与 TSA^[18]类似的迭 代方式获取最优的投影矩阵。设定 D^{o} 和 D^{w} 是两个对角矩 阵,其元素分别为 $D^{o}_{x} = \sum_{j} w^{o}_{ij}$ 和 $D^{w}_{x} = \sum_{j} w^{o}_{ij}$ 。将式(9)写成两 个公式^[25]:

$$\max_{U} \frac{\operatorname{tr}[U^{\mathrm{T}}(D_{v}^{b} - W_{v}^{b})U]}{\operatorname{tr}[U^{\mathrm{T}}(D_{v}^{w} - W_{v}^{w})U]}$$
(12)

$$\max_{V} \frac{\operatorname{tr}[V^{\mathrm{T}}(D_{u}^{t} - W_{u}^{t})V]}{\operatorname{tr}[V^{\mathrm{T}}(D_{u}^{w} - W_{u}^{w})V]}$$
(13)

即分别在给定 U 或者 V 的前提下,迭代计算最佳投影矩 阵 U 和 V,其中 $D_v^t = \sum_i D_u^k X_i V V^T X_i^T, W_v^t = \sum_{ij} w_{ij}^k X_i V V^T X_i^T,$ $D_v^w = \sum_i D_u^w X_i V V^T X_i^T, W_v^w = \sum_{ij} w_{ij}^w X_i V V^T X_i^T, D_u^t = \sum_i D_u^k X_i U U^T X_i^T, W_v^w = \sum_i w_{ij}^w X_i U U^T X_i^T, D_u^w = \sum_i w_{ij}^w X_i U U^T X_i^T, W_v^w$ $= \sum_{ij} w_{ij}^w X_i U U^T X_i^T$. 通过式(12)、式(13)可知,当给定 V 时, 最优投影矩阵 U 可通过求解以下泛化特征值问题得到:

$(D_v^b - W_v^b)u = \lambda (D_v^w - W_v^w)u$	(14)
类似地,当给定U时,最优V矩阵的求解方式为:	
$(D_u^b - W_u^b)v = \lambda (D_u^w - W_u^w)v$	(15)

3 张量局部 Fisher 判别分析

3.1 问题描述

上节所述的 TLLDA 采用二阶张量数据表达优化了 LF-DA 算法,能够保存更多的样本空间信息,性能较传统的 FDA 算法提升不少,但仍然存在不足之处。

1) 从式(9) 可见, 经过调整后, TLLDA 需要计算 2N 次的 矩阵相乘和相加操作。回顾 FDA 算法, 其类内散度矩阵只需 要 N 次叠加计算得到,由于大部分的 uši值为零, 因此其计算 量并无明显增加。然而, FDA 的类间散度矩阵仅需 C 次叠加 计算就能得到,其中 C≪2N。并且该矩阵不具有稀疏性, 因 此, 随着训练样本数量的增加, TLLDA 的计算量将较 FDA 明显增加。

2)通过式(11)可见,TLLDA 仅引入了类内邻域相似度 A_{ii},却未考虑类间数据的近邻权重,因此,算法性能仍有提升 空间。

3) TLLDA 采用传统的迭代求解方法进行最优投影矩阵 计算, 其解具有不稳定性以及非收敛性。

针对上述几点,同时引人 2DLPP 的思想^[19],可将 TLL-DA 中式(9)分子部分进一步调整为:

$$\sum_{i} |A_{ij}| \| U^{\mathsf{T}} \overline{X}_{i} V - U^{\mathsf{T}} \overline{X}_{j} V \|_{F}^{2}$$
(16)

即以各类数据的中心作为类间散度矩阵构建的基础,其加和 次数仅为 2C。而且,不同类别的数据中心相似度也已通过 A;进行反映。最终目标泛函由式(9)转变成:

$$\sum_{i,j=1}^{\sum} A_{ij} \| U^{\mathsf{T}} \overline{X}_{i} V - U^{\mathsf{T}} \overline{X}_{j} V \|_{F}^{2}$$

$$\max_{i,j=1}^{N} w_{ij}^{w} \| U^{\mathsf{T}} X_{i} V - U^{\mathsf{T}} X_{j} V \|_{F}^{2}$$
(17)

称之为张量局部 Fisher 判别分析。

3.2 TLFDA 最佳投影矩阵求解

与 TLLDA 一致,最优投影矩阵 U 和 V 的求解仍需通过 迭代操作。首先,在给定 U 的条件下,式(17)的分母部分可 以化简为:

$$\sum_{i,j=1}^{N} u_{ij}^{w} \| U^{\mathsf{T}} X_{i} V - U^{\mathsf{T}} X_{j} V \|_{F}^{2}$$

$$= \sum_{i,j=1}^{N} u_{ij}^{w} \operatorname{tr}(U^{\mathsf{T}} X_{i} V - U^{\mathsf{T}} X_{j} V)^{\mathsf{T}}(U^{\mathsf{T}} X_{i} V - U^{\mathsf{T}} X_{j} V)$$

$$= 2 \operatorname{tr} \{ V^{\mathsf{T}} [P_{U}^{w} (D^{w} \otimes I_{L_{1}}) P_{U}^{w} - P_{U}^{w} (W \otimes I_{L_{1}}) P_{U}^{w}] V \}$$

$$= 2 \operatorname{tr}(V^{\mathsf{T}} S_{U}^{w} V)$$
(18)

式中,符号 \otimes 代表矩阵克罗内克积,W是由元素 w_{i} 组成的样本近邻相似度矩阵, $S_{i}^{w} = P_{i}^{w}[(D^{w} - W) \otimes I_{L_{1}}]P_{i}^{w}$, P_{i}^{w} 定义为:

$$P_{U}^{m} = [(U^{T}X_{1})^{T}, (U^{T}X_{2})^{T}, \dots, (U^{T}X_{N})^{T}]$$
(19)
类似地,式(17)的分子部分可以化简为:

$$\sum_{i,j=1}^{L} A_{ij} \| U^{\mathsf{T}} \overline{X}_{i} V - U^{\mathsf{T}} \overline{X}_{j} V \|_{F}^{2}$$

$$= 2 \operatorname{tr} \{ V^{\mathsf{T}} P_{U}^{b} [(B-A) \otimes I_{L_{1}}] P_{U}^{b\mathsf{T}} V \}$$

$$= 2 \operatorname{tr} (V^{\mathsf{T}} S_{U}^{b} V)$$
(20)

式中,A 是类别中心的近邻相似度矩阵,其元素由 A_{ij}组成, P¹ 和 B 分别定义为:

$$P_{U}^{b} = \left[(U^{\mathrm{T}} \overline{X}_{1})^{\mathrm{T}}, (U^{\mathrm{T}} \overline{X}_{2})^{\mathrm{T}}, \cdots, (U^{\mathrm{T}} \overline{X}_{\mathrm{C}})^{\mathrm{T}} \right]$$
(21)

$$B = \begin{bmatrix} \sum_{i=1}^{C} A_{1i} & & \\ & \ddots & \\ & & \sum_{i=1}^{C} A_{C_i} \end{bmatrix}$$
(22)

综合上述分析,当给定 U 时,式(17)可以转变为针对 V 的目标泛函:

$$\max_{V} \frac{\operatorname{tr}(V^{\mathrm{T}} S_{U}^{t} V)}{\operatorname{tr}(V^{\mathrm{T}} S_{U}^{u} V)}$$
(23)

其中,V可依下式泛化特征值问题计算得到:

 $S_U^{\flat}V = \lambda S_U^{\omega}V$

(24)

相应解 $V = [v_1, v_2, \dots, v_{L_2}]$ 由式(24)求得的最大 L_2 个特征值相应的特征向量组成。

同理,在给定V的前提下,式(17)可转变为针对U的目标泛函:

$$\max_{U} \frac{\operatorname{tr}(U^{1} \, S_{V}^{U} U)}{\operatorname{tr}(U^{1} \, S_{V}^{W} U)} \tag{25}$$

式中,S^w = P^w[(D^b - W) \otimes I_{L1}] P^{wT},S^w = P^t_V[(B-A) \otimes I_{L1}] P^{WT},P^w 和 P^b 分别定义为:

$$P_{V}^{w} = [X_{1}V, X_{2}V, \cdots, X_{N}V]$$

$$(26)$$

$$\mathcal{D}_{V}^{b} = [\overline{X}_{1}V, \overline{X}_{2}V, \cdots, \overline{X}_{C}V]$$

$$(27)$$

式(25)的推导和求解过程基本与给定 U 为前提时一致。 类似地,U 可通过求解如下泛化特征值问题获得:

$$S_{\nu}U = \lambda S_{\nu}U$$
 (28)

综上分析,TLFDA 的最佳投影矩阵求解算法描述如表 1 所列。

表1 TLFDA 算法描述

输入:带类别标签的 N 个训练样本 X,子空间的维数 L1、L2 以及最大迭代次
数 Itr _{max} 。
输出:投影矩阵 U 和 V。
TLFDA 算法:
初始化 U 为单位矩阵,计算各类数据的平均向量,计算各类数据间的相似度
矩阵 A 和 W,以及相应的 D 和 B。
For $t=1$ to Itr_{max}
计算 S& 和 SV3,通过式(24)计算最佳的 V。
计算 SI 和 SIV,依式(28)计算最佳的 U。
End For

3.3 NSTLFDA 最佳投影矩阵求解

与 TLFD 的求解方法类似^[13],直接根据目标泛函式(24)

和式(28)两个广义特征分解式进行迭代操作并不能得到最终的闭合形式解,存在着解的收敛性问题^[31]。基于此,NSTLF-DA 根据文献[31]的思想引人向量样本的零空间进行算法求 解。首先寻找变换矩阵 *P*₁,将同类样本投影至同一子域,即 将局部类内散度矩阵投影至零空间,然后最大化局部类间散 度矩阵,使异类数据间隔最大化,以适合于模式分类。

在实际应用过程中,张量型降维算法中的类内散度矩阵 往往不存在零空间^[5]。因此,需要借助式(4)向量型 S_w 的零 空间,即先将二维图像样本 X_i 转换成一维向量 x_i ,再创建局 部类内散度矩阵。考虑到一般情况下,全局散度矩阵 $S_i = S_b$ + S_w 的秩是 N-1,可采用 PCA 计算 $P_1^n \in R^{m \times (N-1)}$,将向量 样本转变为 $x_i^n \in R^{N-1}$,即去除 S_b 和 S_w 的公共零空间。基于 x_i^n ,依式(9)计算(N-1)×(N-1)的局部类内散度矩阵 S_w^n , 相应的类内零空间投影矩阵计算公式为:

 tr(P^T₁ S^{*}_w P¹₁)=0
 (29)

 式中,P¹₁ 由 S^{*}_w 矩阵零特征值相应的正交特征向量组成。至
 此,P₁=P¹₁×P¹₁ 计算完成。

通过上述 P_1 ,将任意训练样本 x_i 投影并重构为 x_i^r ,即 $x_i^r = P_1 P_1^T x_i \in R^{m \times 1}$ 。由于 tr(AB) = tr(BA),且 P_1 满足 $P_1^T P_1 = I$ 是一个列正交矩阵,因此根据重构后样本计算所得 的局部类内散度矩阵是一个零迹矩阵:

 $tr\left[\sum_{i,j=1}^{N} w_{ij}^{w} (P_{1}P_{1}^{T}x_{i} - P_{1}P_{1}^{T}x_{j})(P_{1}P_{1}^{T}x_{i} - P_{1}P_{1}^{T}x_{j})^{T}\right]$ = tr[P_{1}P_{1}^{T}S_{w}P_{1}P_{1}^{T}] = tr[P_{1}^{T}S_{w}P_{1}P_{1}^{T}P_{1}] = tr[P_{1}^{T}S_{w}P_{1}] = 0

同类样本统一投影至零空间后,即可进行类间散度最大 化操作。首先将重构样本重组为2维矩阵表现形式 X^r_i ∈ R^{I₁×I₂。然后构建类间散度最大目标泛函为:}

$$\max \sum_{i=1}^{N} A_{ij} \| U^{\mathrm{T}} \overline{X}_{1}^{\mathbf{r}} V - U^{\mathrm{T}} \overline{X}_{j}^{\mathbf{r}} V \|_{F}^{2}$$
(30)

式中, X_1^r 是重构样本中第 *i* 类数据的均值。与式(16)类似, 式(30)并不存在闭合形式解,仍需采用迭代更新操作,即在给 定 V时,根据重构后的 2 维样本,依式(20)构建 S_1^{vr} ,最优 U 投影矩阵即由 S_1^{vr} 最大 L_1 个特征值所对应的特征向量组成。 类似地,在给定 U 时,则构建相应的 S_1^{vr} ,最优 V 投影矩阵即 由 S_1^{vr} 中最大 L_2 个特征值所对应的特征向量组成。

针对上述求解过程,如果定义 $h(U_t, V_t) = 1/\sum_{i,j=1}^{\infty} A_{ij}$ $\|U_t^T X_1^{rr} V_t - U_t^T X_j^{rr} V_t\|_F^2$,其中t是迭代次数,在式(30)的迭 代计算过程中, $h(U_t, V_t)$ 是非增的:

 $h(U_t, V_t) \ge h(U_{t+1}, V_t) \ge h(U_t, V_{t+1})$ (31)

表 2 NSTLFDA 算法描述	Ł
------------------	---

输入:与表1算法一致。
输出:投影矩阵 P1,U和 V。
NSTLFDA 算法:
1) 将训练样本 Xi 转换成 xi,通过 PCA 计算 $P_1^a \in R^{m \times (N-1)}$ 并将 xi 投影成
$\mathbf{x}^{\mathbf{a}}_{\mathbf{i}} \in \mathbf{R}^{\mathbf{N}-1}$;
2) 依式(29)计算得到 P ^b ₁ ,则 P ₁ =P ^a ₁ ×P ^b ₁ ;
3) 对所有样本进行重构 $\mathbf{x}_i^{re} = \mathbf{P}_1 \mathbf{P}_1^T \mathbf{x}_i$,然后表达成矩阵形式 $X_i^{re} \in \mathbf{R}^{L_1 imes L_2}$;
4)初始化U和V为单位矩阵;
5) For $t=1$ to Itr_{max}
计算 \mathbf{S}_{U}^{bre} ,求得其最大 L_2 个特征值对应的特征向量得到 V_{t+1} 。
计算 $\mathbf{S}_{\mathbf{V}}^{bre}$,求得其最大 L_1 个特征值对应的特征向量得到 U_{t+1} 。
End For

又由于 $h(U_t, V_t) \ge 0$,因此 NSTLFDA 能够达到稳定的 局部最优解。表 2 是 NSTLFDA 的算法描述。值得注意的 是,在一些具体应用场合中,训练样本量较大,满足 N>m,则 式(29)的零空间并不一定存在,此时 NSTLFDA 退化为 TLFDA(算法描述见表 1)。

3.4 特征提取及分类

根据 TLFDA 和 NSTLFDA 两种不同求解方法,在实际 应用中,当 N > m时,采用表 1 算法求得 U 和 V,将任意原输 入样本依式(3)投影至子空间,如输入测试样本为 X_{test} ,其对 应的投影空间数据为 $Y_{test} = U^T X_{test} V$ 。采用最近邻法进行最 后的数据类别判定,其中的相似性测度采用欧式距离:

$$d(Y_{test}, Y_i^c) = \|Y_{test} - Y_i^c\|_F^2$$
(32)

如果 Y_{test} 与 Yⁱ 之间的距离为最小,则 X_{test} 的类别被判定 为 c。

当 N < m 时,依表 2 求得 P_1 、U 和 V,将所有训练样本重 构后投影到子空间,对于任意测试样本 X_{test} ,先进行重构得到 $X_{test}^n = P_1 P_1^T X_{test}$,然后进行投影操作,并依式(32)进行类别判 断。

3.5 时间复杂度分析

张量型算法需要进行迭代求解,每一次迭代中,TLFDA 计算 S_{0} , S_{0} , S_{0} 和 S_{0} 分别消耗 O{ $C^{c}L_{1}^{2}(I_{1}+1)$ },O{ $N^{2}L_{1}^{2}(I_{1}+1)$ },O{ $C^{c}L_{2}^{2}(I_{2}+1)$ } 和 O{ $N^{2}L_{2}^{2}(I_{2}+1)$ }的时间复杂 度,而两次特征分解分别需要用时 O(I_{1}^{3})和 O(I_{2}^{2})。如果统 一将 L_{1} , L_{2} , I_{1} , I_{2} 表达为 I,则 TLFDA 的完整时间复杂度可 以表达为 O{ $Itr_{max}(C^{c}+N^{2})I^{3}$ }。

当训练样本数 N > m 时, NSTLFDA 算法与 TLFDA 完 全一致。当 N < m 时, NSTLFDA 也要计算与 TLFDA 相同 的 Sh 和 Sh。此外, 对比 TLFDA, NSTLFDA 的额外运算量 包括:生成 Pi 和 Pi 分别需要 O(N³)和 O{(N-1)³}的时间 复杂度, 对训练样本 X 进行重构时需要 O{m(N-1)(C-1)+ $m^2(N+C-1)$ }的计算量, 总计为 O{ $2N^3 + m(N-1)(C-1)$ + $m^2(N+C-1)$ }。由于 NSTLFDA 并不需要计算 Sh 和 SH, 因此其总体计算量与 TLFDA 较为接近。

LFDA 计算 S_w 和 S_b 需要 O($m^2 N$)的时间复杂度,特征 分解则需要 O(m^3)的计算用时,因此最终的时间复杂度为 O $\{m^2(N+m)\}_o$ 虽然 LFDA 不需要通过迭代操作进行最优矩 阵求解,但由于 $m=I_1 \times I_2$,并且当应用于人脸识别时,N < m是一个普遍存在的现象(小样本问题),因此,一般来说 LFDA 的计算用时要多于 TLFDA。

4 实验与分析

4.1 数据集和实验配置

分别采用 ORL、Yale 和 ExYaleB 3 个典型的人脸数据库 验证本文所提张量投影算法的性能。

ORL 数据库(http://www.cam-orl.co.uk) 共包括 40 人 各 10 张灰度人脸图像,根据眼睛的距离进行图像配准,使所 有样本图像的左眼中心和右眼中心重合。图 1 是 ORL 人脸 库的部分人脸样例。

图 1 ORL 人脸库部分样本示例

Yale 人脸数据库(http://cvc. yale. edu/projects/ yalefaces)包含 15 人共 165 幅脸部图像,每人 11 幅。所有图像取 自于不同光照条件,且包含正常、愉悦、悲伤、困倦,惊讶和眨 眼等不同表情。图 2 是 Yale 数据库中的部分样例图。

图 2 Yale 人脸库部分样本示例

ExYaleB 人脸数据库包含 38 人的 21888 张图像,其中包括 9 个姿态和 64 个光照变化。本文抽取其中 2500 幅正面、 光照各异的图像用于测试,其图像样例如图 3 所示。

图 3 ExYaleB 人脸库部分样本示例

上述所有人脸数据库的图像都统一调整至 32×32 像素, 每像素的灰度值在 0~255 之间。为验证算法性能,每个数据 库都分为不同的训练集和测试集,并以 xtrain 为标记,表示随 机选取 x 张图像用于训练过程,余下的作为测试样本。在具 体实验过程中,本文同时实现了 NSTLFDA、TLFDA、TSA、 TLFD、TMFA 以及它们各自的向量型版本 LFDA,LPP,LFD 和 MFA 的对比测试。实验中热核函数的参数取所有训练样 本间距离的平均值。TMFA 与 MFA 需要构建类内近邻图和 类间近邻图,实验中采用的类内近邻数为 min(5, unc),类间 近邻数为 min(400, bnc),其中 unc 和 bnc 分别为同类训练总 数和异类训练总数。TSA 和 LPP 也需要通过 k 近邻算法构 建局部邻域图,实验中采用的近邻数为 min(10, unc)。所有 实验均在一台 Intel Core2 CPU 1.8GHz 的 PC 机上进行,操 作系统为 Windows XP,各算法都采用 Matlab7.1 实现。所有 的结果都通过 20 次同类数据实验并取平均值获得。

4.2 最佳迭代次数选择

张量型数据降维算法包括 NSTLFDA、TLFDA、TSA、 TLFD 和 TMFA, 它们都需要对 U 和 V 进行迭代更新操作以 获得最佳的投影结果。算法具体应用前需要确认最佳的迭代 次数,在获得理想效果的同时又不至于耗费过多的计算量。 图 4 是不同迭代次数下 ORL 库中 3 train 和 5 train 的识别率 结果,其中子空间维数为 $L_1 = L_2 = 10$ 。图 5 是 Yale 中 4train 和 6train 的迭代效果,低维维数为 $L_1 = L_2 = 7$ 。类似地,图 6 是 ExYaleB 人脸库在 10 train 和 20 train 两种实验方式中不同 迭代次数下的识别率变化,子空间维数为 $L_1 = L_2 = 20$ 。在 ORL 和 ExYaleB 中,各算法基本都在 3 次迭代后达到了近似 最优的识别效果,而在 Yale 中,各算法基本在 5 次迭代之后 达到识别率近似最优。可见,各种张量型数据降维算法都不 需要过多的迭代次数就可获得近似最优的识别结果。需要注 意的是,随着迭代次数的增加,TLFDA、TMFA、TSA、TLFD 都不能达到真正的稳定解,识别率曲线存在着不同程序的波 动,而 NSTLFDA 则在 2~3 次迭代过程后能够达到稳定的 识别率结果。通过观察发现,各算法在10次迭代时都能达到

相对较优的识别率,因此在后续实验中,如无特别声明, NSTLFDA采用3次迭代进行求解,而其它各张量型算法统 一采用10次迭代进行求解。

图 5 Yale 人脸库中不同迭代次数下的识别率变化

图 6 ExYaleB 人脸库中不同迭代次数下的识别率变化

4.3 最优投影维度分析

针对不同的人脸数据集,各种投影算法的最佳子空间维数是不确定的。本节主要分析在ORL、Yale 和 ExYaleB 中,5 种张量型算法和相应向量型算法的最佳低维维数选择。图7 是不同维数选取下,ORL 3train 和 5train 的相应子空间维数 选择效果。图8是 Yale 4train 和 Yale 6train 的实验结果。图 9则是 ExYaleB 的 10train 和 20train 相应维数识别率。表 3 是所有算法在 3 个人脸库中的最佳识别率和相应子空间维数。与向量型算法不同,张量型算法将数据降至 $L_1 \times L_2$ 。为 方便实验操作,本文采用 $L_1 = L_2$ 的实验策略,并在图中统一 表达为 L。此外,考虑到张量型算法和向量型算法的子空间 维数跨度差异较大,本文将两类算法的实验结果分开表示,其 中张量型算法图以 T 前缀标注,而向量型算法图以 V 前缀标 注。

从图 7-图 9 可见,NSTLFDA 算法在投影维数达到 $L_1 = L_2 = 8$ 后,识别率曲线即进入稳定的近似最优状态,而其它几种张量型算法依子空间维数变化的识别率则近似呈抛物线状,这主要是由于 TLFDA、TMFA、TSA 和 TLFD 都没有考虑零空间信息,当子空间维数进一步增加时,投影数据中冗余信息量增加,致使判别能力减弱。在向量型算法中,由于 $I_1 \times I_2 \gg L_1$,因此其识别率曲线后段也基本呈稳定状态。此外,在最佳降维维数选择方面,张量型算法的投影跨度是[1,32],远远小于向量型算法的[1,1024]。因此其子空间维数更易确定。

4.4 算法求解效率分析

Yale 6train

0.8173(30)

0.7490(9)

0.8130(40)

0.7290(9)

0.7547(58)

0.6927(8)

0.6712(59)

0.6820(6)

0.7880(14)

本节主要将 NSTLFDA 与 TLFDA、TSA 和 LFDA 进行 算法求解效率对比,TSA 的时间复杂度是 O{ $Itr_max[I_1^3 + I_2^3 + N^2(I_1 \times I_2)^{3/2}]$ ^[34],每次迭代都需要计算 D_V, W_V, D_U 和 $W_U 4 个矩阵,分别需要 O(NL_1 I_1^2),O(N^2 L_1 I_1^2),O(NL_2 I_2^2)$ 和 $O(N^2 L_2 I_2^2)$ 的时间复杂度。在实际应用过程中,往往满足 N $\gg C, I_1 > L_1 \pm I_2 > L_2$ 。因此,TSA 的计算代价高于 TLF-DA。图 10-图 12 分别是 4 种算法在 ORL、Yale 和 ExYaleB 中的求解时间对比。为公平起见,所有实验都在相似的识别 率前提下进行,且不同张量型算法的子空间维数和迭代次数 需要一致。依据上节实验结果,在 ORL 和 Yale 数据库中,子 空间维数统一选为 $L_1 = L_2 = 6$ 时几种算法的识别率最为接 近,而 ExYaleB 的子空间维数确定为 8,迭代次数统一为 10。 LFDA 的计算量主要是由原训练数据维数决定,子空间维数 并非决定因素,实验中选择使识别率近似最优的 $L_1 = 100$ 。

ExYaleB 10train

0.8398(23)

0.8334(18)

0.7971(118)

0.8270(18)

0.7611(120)

0.8183(14)

0.4800(120)

0.8035(13)

0.7503(37)

ExYaleB 20train

0.8966(24)

0.8934(18)

0.8597(114)

0.8911(18)

0.8510(118)

0.8854(16)

0.6195(120)

0.8724(14)

0.8279(37)

图 10 NSTLFDA, TLFDA, TSA 图 11 和 LFDA 在 ORL 人脸库 中的求解时间对比

NSTLFDA, TLFDA, TSA 和 LFDA 在 Yale 人脸库 中的求解时间对比

图 12 NSTLFDA, TLFDA, TSA 和 LFDA 在 ExYaleB 人脸库中 的求解时间对比

从图 10 和图 11 可见,在 ORL 和 Yale 中,由于 $N \ll m$,因 此张量型算法的求解时间明显低于向量型算法,其中在 ORL 3train 实验中,LFDA 需要耗费近 10s 的求解时间,而 NSTLFDA、TLFDA 和 TSA 则分别只需 0.5s,0.37s 和0.77s 的计算用时,远远快于 LFDA。由于 N 值较小,NSTLFDA、 TLFDA 和 TSA 的计算用时基本一致,但仍能看出 TSA 需要 花费更多的求解时间。在 Yale 6train 实验中,NSTLFDA 的 求解用时为 0.27s,而 TSA 则需要 0.95 的计算用时,接近于 TLFDA 的 4 倍。NSTLFDA 与 TLFDA 的求解时间非常接 近,尤其是在 Yale 实验中,两者基本达到一致,从具体数值来 看,NSTLFDA 的计算用时更高,在 Yale 6train 实验中,TLF- DA 的求解时间仅需 0. 23s。如果进一步考虑算法收敛性,通 过 4. 2 节的迭代实验可知,NSTLFDA 在 3 次迭代后即进入 稳定阶段,本实验中的后续 7 次迭代过程完全是冗余操作,而 TLFDA 并没有稳定解,需要更多次迭代来达到近似稳定的 算法性能。

从图 12 可见,在 ExYaleB中,随着训练数据量的增加,N 接近甚至高于m值。相应地,张量型算法的计算用时也接近 甚至高于向量型算法。在张量型算法中,未达到 30train 训练 样本时,NSTLFDA的求解时间最短。之后,由于 N=1140> m=1024,NSTLFDA退化为 TLFDA,相应的求解时间当然 也与 TLFDA一致。由于 LFDA的计算耗时主要受输人数据 维数的影响,受训练样本量的影响较小,因此其数值基本在 13s 左右。由于人脸识别中 N>m的情形较少,且 NSTLF-DA能够在更少次迭代次数内达到稳定解,因此,综上所述, NSTLFDA 具有更高的算法求解性能。

4.5 各类降维算法性能对比

本节将 NSTLFDA、TLFDA、LFDA、TMFA、MFA、 TSA、LPP、TLFD和LFD进行综合的识别性能对比,各算法 的子空间维数通过对表 3 相应数据取均值并向上取整确定, 例如 TSA 算法在 ORL 3train 中和 5train 中的最佳子空间维 数分别为 9 和 12,则本节实验中具体取值为 $L_1 = L_2 = 11$ 。表 4—表 6 给出了具体的识别率数值对比,加粗部分是最高识别 率值。

从表4可见,在ORL人脸库实验结果中,NSTLFDA达 到了最高的识别率,反映了零空间信息对判别结果的重要性。

在所有结果中,张量型算法都较相应的向量型算法效果更优, 其中 TLFD 在不同训练数时识别率都较 LFD 高 10%以上, 说明张量型算法中空间信息保持对识别效果是有益的。除 NSTLFDA 外,TLFDA 具有最高的识别率,而 TMFA 的识别 性能与 TLFDA 最为接近,两者都兼顾考虑了数据分布的类 内近邻和类间近邻结构。TSA 虽然考虑了全局散度最大化, 但其近邻保持过程中并未引入类别信息,而 LFD 虽然充分考 虑了数据类别信息,却忽略了样本近邻结构,导致 TSA 和 TLFD 两者较上述 TLFDA 和 TMFA 两种算法性能略差。 所有算法中,性能最差的是 LPP 降维技术,其在训练数据量 较为充裕的 8train 实验中也只达到了 77%的识别率,验证了 类别信息对判别性能的重要性。值得注意的是,在 2train 实 验中,TLFD的识别率达到了第二高的 80.5%,这主要是由 于 TLFDA、TMFA 和 TSA 都需要类内近邻结构进行最终目 标泛函的构建,而每类两个样本用于训练时,近邻数据过少, 不足以反映直实的数据类内分布特性。

从表 5 可见,在 Yale 数据库实验中,NSTLFDA 算法仍 然具有最高的识别结果。然而,除 NSTLFDA 和 TSA 外,其 它张量型算法的识别率都不如相应的向量型算法,例如在 3train 实验中,TLFDA 的识别率为 58.2%,低于 LFDA 的 62.6%。这主要是由于 Yale 数据库中的同类人脸图像受光 照和表情的影响,差异性较 ORL 和 ExYaleB 更大,通过张量 图像表达在保留更多空间信息的同时也保存了更多的类内差 异性信息,导致识别结果不升反降。而 LPP 由于缺少类别信 息,其综合识别率仍然低于其它各算法。

表 4 各种投影算法在 ORL 人脸库中不同训练样本数下的识别率对比

Samples	NSTLFDA	TLFDA	LFDA	TMFA	MFA	TSA	LPP	TLFD	LFD
2train	0. 8441	0.7594	0,8031	0.7593	0. 7391	0.7972	0.5546	0.8053	0.6200
3train	0.9164	0,9101	0.8814	0.9019	0.8364	0.8935	0.6163	0.8879	0.6994
4train	0.9525	0.9450	0, 9363	0.9367	0.8967	0.9237	0.6670	0.9304	0.7863
5train	0.9700	0.9640	0,9600	0.9540	0.9125	0.9500	0.7055	0.9435	0.8086
6train	0.9733	0.9730	0.9700	0.9656	0,9350	0.9575	0.7606	0.9600	0.8176
7train	0.9781	0.9742	0,9702	0.9642	0.9333	0.9542	0.7733	0.9567	0.8312
8train	0.9862	0,9812	0.9775	0,9861	0, 9437	0.9775	0.7700	0.9738	0.8431

在表 6 ExYaleB 实验结果中,NSTLFDA 和 LPP 在所有 算法中的识别率排位与上述实验一致。此外,各类向量型算 法较所有的张量型算法识别率更低,再一次验证了张量型数 据表达、零空间信息以及类别信息对判别性能的重要性。

表 5 各种投影算法在 Yale 人脸库中不同训练样本数下的识别率对比

Samples	NSTLFDA	TLFDA	LFDA	TMFA	MFA	TSA	LPP	TLFD	LFD
2train	0.5407	0.4104	0.5340	0, 3993	0. 4496	0. 4563	0.4546	0. 4289	0.5319
3train	0.6658	0.5817	0.6258	0.5633	0.6050	0.5742	0.5063	0.5442	0.6525
4 train	0. 7450	0.6824	0.7440	0.6570	0.6827	0.6390	0.6157	0.6281	0.7229
5train	0. 7856	0.7256	0.7689	0,6867	0.6970	0.6600	0.6355	0.6500	0.7511
6train	0, 8167	0.7480	0.8130	0,7290	0.7140	0.6927	0.6712	0.6813	0.7880
7train	0.8300	0.7817	0,8250	0.7600	0.7400	0,7200	0,6833	0,7030	0, 7967
8train	0, 8556	0.8400	0,8444	0.7800	0.7567	0.7489	0.6900	0.7234	0.8344

表 6 各种投影算法在 ExYaleB 人脸库中不同训练样本数下的识别率对比

Samples	NSTLFDA	TLFDA	LFDA	TMFA	MFA	TSA	LPP	TLFD	LFD
5train	0.7521	0, 7321	0, 6528	0.7180	0.6134	0, 7059	0.4014	0.6743	0, 6665
10train	0. 8398	0.8334	0.7970	0.8270	0.7601	0.8183	0.4879	0.8030	0, 7503
20train	0.8966	0.8934	0.8544	0.8911	0.8463	0.8814	0.6180	0.8724	0.8279
30train	0.9108	0.9108	0.8598	0,9088	0.8499	0.9009	0.6370	0.8923	0.8391
40train	0.9306	0.9306	0.8570	0,9287	0.8500	0.9187	0.6530	0.9169	0.8436
50train	0.9422	0. 9422	0.8663	0, 9331	0.8510	0. 9301	0.6665	0, 9233	0.8500

4.6 综合分析

鉴于上述一系列实验过程,强调如下几点:

1) 张量型数据降维算法都需要经过迭代训练过程获取最优投影矩阵。在具体求解过程中,NSTLFDA引入零空间思

想,能够获得稳定的识别率结果,而其它张量型算法在多次迭 代后仍无法达到最终的稳定解,说明了零空间信息的重要性。

2)NSTLFDA 和 TLFDA 的求解过程较 LFDA 和 TSA 更为高效,尤其是 LFDA,其主要计算量用于维数矩阵的特征 分解,导致在小训练样本时也需要更高的计算负担。

3)一般情况下,对比向量型算法,张量型算法具有更高的 识别性能、更小的计算量以及更易选择的子空间维数。然而, 当数据类内分布具有较大的空间差异性时,张量型算法的效 果反而逊于向量型算法。

4)由于缺少类别信息,LPP并不适合于分类识别任务。 虽然 TSA 的分子目标泛函并未考虑类别信息,但其分母目标 泛函却用于最大化全局散度。因此 TSA 的识别性能较 LPP 有质的提升,说明了类别信息和类间离散度在面向分类的子 空间降维技术中的重要性。

结束语 结合 LFDA 和 TSA 两种经典子空间降维技术 的优势,本文提出了张量的局部 Fisher 判别分析(TLFDA)。 依据 TSA,TLFDA 采用张量降维技术,即对原输人数据进行 双边降维变换,而非单边降维变换。依据 LFDA,TLFDA 以 类间散度最大和类内散度最小为目标,同时考虑同类和异类 数据的近邻结构,并将各类中心代替各数据进行类间散度最 大化,以减少计算量。引入零空间思想,对 TLFDA 的求解方 法进行改进,提出了 NSTLFDA,它可以得到更优的稳定解以 及更少的迭代次数。通过理论分析,NSTLFDA 和 TLFDA 较 TSA 以及 LFDA 具有更低的计算时间复杂度。在 ORL、 Yale 和 ExYaleB 3 组人脸库实验结果中显示了张量局部 Fisher 判别分析技术及相应零空间分析的有效性。

后续工作将重点围绕 TLFDA 可挖掘的潜力。首先, NSTLFDA 求解过程计算量主要依赖于训练样本数量 N,期 望能够通过增量式求解策略进行改进。其次,本文 TLFDA 主要采用二阶张量,有必要进行更高阶的扩展,使得算法能够 满足于更多任务需求。

参考文献

- [1] 陈诗国,张道强. 半监督降维方法的实验比较[J]. 软件学报, 2011,22(1):28-43
- [2] Li H S, Hao J, Barrio R, et al. Incremental manifold learning by spectral embedding methods [J]. Pattern Recognition Letters, 2011,32(10):1447-1455
- [3] 吴枫,仲妍,吴泉源.基于增量核主成分分析的数据流在线分类 框架[J].自动化学报,2010,36(4):534-542
- [4] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720
- [5] Lai Z H, Wan M H, Jin Z, et al. Sparse two-dimensional local discriminant projections for feature extraction [J]. Neurocomputing, 2011, 74(4):629-637
- [6] Archambeau C, Delannay N, Verleysen M. Mixtures of robust probabilistic principal component analyzers [J]. Neurocomputing, 2008,71(7-9):1274-1282
- [7] Ioffe S. Probabilistic linear discriminant analysis[C]//Proceeding of the 9th European Conference on Computer Vision. Graz, Austria, 2006; 531-542
- [8] Tao D, Li X, Wu X, et al. Geometric mean for subspace selection

[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 260-274

- [9] Cevikalp M, Neamtu M, Barkana W A. Discriminative common vectors for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(1): 4-13
- [10] Yang J, Zhang D, Frangi A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):131-137
- [11] Li M, Yuan B. 2D-LDA; a statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5); 527-532
- Zheng W S, Lai J H, Li S Z. 1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based
 [J]. Pattern Recognition, 2008, 41(7): 2156-2172
- [13] Tao D C, Li X L, Wu X D, et al. General tensor discriminant analysis and gabor features for gait recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (10):1700-1715
- [14] Wang J G, Sung E, Yau W Y. Incremental two-dimensional linear discriminant analysis with applications to face recognition[J]. Network and Computer Applications, 2010, 33(1): 314-322
- [15] Wang Q, Chen F, Xu W L. Tracking by third-order tensor representation[J]. IEEE Transactions on System, Man, and Cybernetics-Part B.Cybernetics, 2011, 41(2):385-396
- [16] Wu Q, Zhang L Q, Shi G C. Robust multifactor speech feature extraction based on Gabor analysis[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4):927-936
- [17] He X F, Yan S C, Hu Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
- [18] He X F, Cai D, Niyogi P. Tensor subspace analysis[C] // Advances in Neural Information Processing Systems. MIT Press, 2005:499-507
- [19] Yu W. Two-dimensional discriminant locality preserving projections for face recognition[J]. Pattern Recognition Letters, 2009, 30(15):1378-1383
- [20] Yan S C, Xu D, Zhang B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51
- [21] Liu S, Ruan Q. Orthogonal tensor neighborhood preserving embedding for facial expression recognition[J]. Pattern Recognition, 2011, 44(7):1497-1513
- [22] Lei Y K,Ding Z G, Hu R X, et al. Orthogonal local spline discriminant projection with application to face recognition[J]. Pattern Recognition Letters, 2011, 32(4); 615-625
- [23] Zhou T Y, Tao D C, Wu X D. Manifold elastic net: a unified framework for sparse dimension reduction[J]. Data Mining and Knowledge Discovery, 2010, 22(3): 340-371
- [24] Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J]. Journal of Machine Learning Research, 2007, 8(1):1027-1061
- [25] Zhang Z, Chow W S. Tensor locally linear discriminative analysis[J]. IEEE Signal Processing Letters, 2011, 18(11): 643-646

• 18 •

$$e_{jp}^{(k+1)} = e_{jp}^{(k)} + 2^{-k} d^{(k)} e_{jq}^{(k)}, j = 1, 2, 3$$
(11)

$$e_{jq}^{(k+1)} = e_{jq}^{(k)} + 2^{-k} d^{(k)} e_{jp}^{(k)}, j = 1, 2, 3$$
(12)

$$e_{jq}^{(k+1)} = e_{jq}^{(k)} + 2^{-k} d^{(k)} e_{jp}^{(k)}, j = 1, 2, 3$$
(12)

结合图 3 所示的 FFU 内部结构图, FFU 工作过程如下:

1)数据控制器把数据存入 FFU 对应的位置 $a_{fp}^{(k)}, a_{gn}^{(k)}, a_{gp}^{(k)}, a_{gp}^{(k)}, a_{gn}^{(k)}$ 4 个寄存器, $d^{(k)}$ 即是由 $a_{gn}^{(k)}$ 的符号位引出。设置 cnt =0;并启动 FFU。

2)在 FFU 的控制下数据按照算法的要求流经不同的函数模块,并把得到的计算结果进行累加,分别计算 a^(k+1), a^(k+1), a^(k+1), a^(k+1), a^(k+1)。

3)更新。令 $a_{pp}^{(k)} = a_{pp}^{(k+1)}, a_{pq}^{(k)} = a_{pq}^{(k+1)}, a_{qq}^{(k)} = a_{qq}^{(k+1)}, a_{qp}^{(k)} = a_{qq}^{(k+1)}, a_{qp}^{(k)} = a_{qq}^{(k+1)}, cnt = cnt + 1$ 。

4)如果 cnt==64,计算结束,否则转到 2)。

VFU和 SFU的结构和计算过程类似,这里不再赘述。

4 硬件实现与测试

整个设计采用 Verilog 语言描述,在 Xilinx 的 xc3sd 1800a-5 cs484 FPGA上进行了实现。为验证系统的正确性,同时测 试系统的性能,本文用表 2 所列的矩阵 X 对系统进行了测 试。表 3 给出了硬件实现的综合报告。

表 2 测试数据及结果

	+7	六进制数据	浮点数据	
原始实 对称矩阵	$X = \begin{bmatrix} 405b851f \\ 402ae148 \\ 4099999a \end{bmatrix}$	402ae148 3f99999a 40666666	40999999a 406666666 40a00000	$\mathbf{X} = \begin{bmatrix} 3.43 & 2.67 & 4.8\\ 2.67 & 1.2 & 3.6\\ 4.8 & 3.6 & 5 \end{bmatrix}$
特征值	$D = \begin{bmatrix} BF825FBB \\ 2F5CA1FF \\ 322F0A7A \end{bmatrix}$	2F5CA1FF BEE765CA 31FE3A14	322F0A7A 31FE3A14 41319BA0	$D = \begin{bmatrix} -1.0185464 & 0 & 0\\ 0 & -0.4519481 & 0\\ 0 & 0 & 11.1004943 \end{bmatrix}$
特征向量	$\mathbf{E} = \begin{bmatrix} \mathbf{B}\mathbf{E}74\mathbf{C}\mathbf{C}6\mathbf{F} \\ \mathbf{B}\mathbf{F}3\mathbf{C}\mathbf{C}62\mathbf{B} \\ 3\mathbf{F}21\mathbf{B}97\mathbf{A} \end{bmatrix}$	3F46F593 BF090B3A BEA959F6	3F1503FE 3ED2E50B 3F33798B	$\mathbf{E} = \begin{bmatrix} -0.2390611 & 0.7771846 & 0.5820921 \\ -0.7373988 & -0.5353275 & 0.4119037 \\ 0.6317363 & -0.3307644 & 0.7010733 \end{bmatrix}$

表 3 综合报告

Vendor	Xilinx			
Family	Spantan-3dsp			
Device	xc3sd1800a-5			
Number of Slice Flip Flops	3020 out of 33280 (9%)			
Number of 4 input LUTs	3121 out of 33280 (9%)			
Slice	2467 out of 16640 (14%)			
Maximum frequency	154 MHz			

结束语本文利用 FPGA 设计实现了符合 IEEE-754 标 准的单精度浮点(32-bit)雅克比算法(基于 CORDIC 算法实 现)用于求解高精度浮点实对称矩阵的特征值和特征向量。 该设计结合 FPGA 自身的特点,采用流水线结构的设计思 想,在保证运算精度的前提下,最大限度地优化了资源和速 度。该设计采用浮点运算单元,相比定点设计提供了更高的 精度和更大的动态范围。测试结果表明:1)对于 3 * 3 的实对 称矩阵(每个矩阵元素是 32-bit 浮点数),精度达到 2⁻²⁰;2)设 计实现的结构占用 2467 个 slices,占芯片总资源的 14%,最高 运行时钟频率达到 150MHz。

(上接第18页)

- [26] Gu X H,Gong W G, Yang L P. Regularized locality preserving discriminant analysis for face recognition[J]. Neurocomputing, 2011,75(5):201-215
- [27] Yu H, Yang J. A direct LDA algorithm for high-dimensional data-with application to face recognition[J]. Pattern Recognition, 2001,34(10):2067-2070
- [28] Wang X, Tang X. Dual-space linear discriminant analysis for face recognition[C] // Proceeding of IEEE Conference on Computer Vision and Patter Recognition, 2004:564-569
- [29] Chu D, Thye G S. A new and fast implementation for null space based linear discriminant analysis [J]. Pattern Recognition, 2010,43(4):1373-1379
- [30] Yang L P, Gong W G, Gu X H, et al. Bagging null space locality

参考文献

- Bravo I, Jimenez P, Mazo M, et al. Implementation in FPGAs of Jacobi Method to Solve the Eigenvalue and Eigenvector Problem
 [C] // International Conference on Field Programmable Logic and Applications. 2006;1-4
- [2] 袁生光,沈海斌. 基于 Jacobi 算法对称矩阵特征值计算的 FPGA 实现[J]. 机电工程,2008,25(10):80-82
- [3] 宋庆增,顾军华,张金珠. 基于 FPGA 的 Jacobi 迭代求解器研究 [J]. 计算机工程与应用,2011,47(29);74-77
- [4] Wang Tao, Wei Ping. Hardware Efficient Architectures of Improved Jacobi Method to Solve the Eigen Problem[C]//2nd International Conference on Computer Engineering and Technology (ICCET). V6,2010;22-25
- [5] 张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004
- [6] Volder J E. The CORDIC Trigonometric computing technique
 [J]. IRE Transactions on Electronics Computers, 1959, 8(3); 330-334

preserving discriminant classifiers for face recognition[J]. Pattern Recognition, 2009, 42: 1853-1858

- [31] Xu D, Yan S C, Lin S, et al. Convergent 2-D subspace learning with null space analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(12): 1753-1759
- [32] Eschenauer H, Koski J, Osyczka A. Multicriteria design optimization[M]. Springer-Verlag, 1990
- [33] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many:Illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):643-660
- [34] Guan Z, Wang C, Chen Z, et al. Efficient face recognition using tensor subspace regression[J]. Neurocomputing, 2010, 73(13): 2744-2753

• 37 •