计算机科学 ›› 2009, Vol. 36 ›› Issue (7): 188-192.doi: 10.11896/j.issn.1002-137X.2009.07.045

• 人工智能 • 上一篇    下一篇

几何误差和数值误差最小化的Zernike矩

张刚,马宗民   

  1. (东北大学信息科学与工程学院 沈阳110004);(沈阳工业大学软件学院 沈阳110023)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受新世纪优秀人才支持计划项目(NCET-05-0288)资助。

Zernike Moments with Minimum Geometric Error and Numerical Integration Error

ZHANG Gang,MA Zong-ming   

  • Online:2018-11-16 Published:2018-11-16

摘要: 形状特征提取和表示是基于内容图像检索的重要研究内容之一。提出一种几何误差和数值误差最小化的Zernike矩方法,并且把这种方法应用于形状特征提取和表示。该方法把图像中的兴趣区域映射到单位圆里,通过计算变换后图像在Zernike多项式上的投影来取得Zernike矩,并且通过把心理生理学的研究成果引入Zernike矩的计算过程来提高系统的检索性能。通过实验对传统Zernike矩方法、几何误差和数值误差最小化的Zernike矩方法进行了比较,发现从重构角度采用几何误差和数值误差最小化的Zernike矩方法优于采用传统Zernike矩方法。而从检索角度采用几何误差和数值误差最小化的Zernike矩方法的系统比采用传统Zernike矩方法的系统具有更好的检索性育色。

关键词: 基于内容图像检索,形状特征提取和表示,Zernike矩

Abstract: Shape feature extraction and description arc one of important research topics in content-based image retricval. The paper presented an approach using Zernike moments with minimum geometric error and numerical integration error,which is used for shape feature extraction and description. The approach maps the region of interest in an image into a unit disk,and the Zernike moments can be formed by computing a projection of the mapped image onto Zernike polynomials. Also the psychophysioiogical research results are introduced in the computation of Zernike moments to improve the retrieval performance of a system. Compared with the traditional Zernike moments, our experiment results show that the Zernike moments with minimum geometric error and numerical integration error arc better than the traditional Zernike moments approaches from the viewpoint of reconstruction. Viewed from retrieval, the systems using the Zernike moments with minimum geometric error and numerical integration error have better retrieval performance than the systems using the traditional Zernike moments.

Key words: Content based image retrieval,Shape feature extraction and description,Zernike moments

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!