计算机科学 ›› 2014, Vol. 41 ›› Issue (12): 33-37.doi: 10.11896/j.issn.1002-137X.2014.12.008

• 第十届中国信息和通信安全学术会议 • 上一篇    下一篇

一种微博预警算法

刘功申,孟魁,谢婧   

  1. 上海交通大学电子信息与电气工程学院 上海200240;上海交通大学电子信息与电气工程学院 上海200240;上海交通大学电子信息与电气工程学院 上海200240
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受面向网络舆论的定主题情感分析技术研究(61272441),海量网络舆情信息获取、分析及表达关键技术研究(61171173),973计划项目社交网络分析与网络信息传播的基础研究(2013CB329603)资助

Early Warning Method for Microblog

LIU Gong-shen,MENG Kui and XIE Jing   

  • Online:2018-11-14 Published:2018-11-14

摘要: 以新浪微博为研究对象,基于用户特征将用户对微博转发量的影响力进行量化,提出了一种微博预警算法。首先,分别研究了大转发量与小转发量的微博作者的用户基本特征,获得其中对关键用户与非关键用户具有良好区分度的特征,并基于信息增益的特征选择法获得用户特征对用户关键性的区分度。随后,基于特征加权模型,提出了一种用户对微博转发量的影响力的量化算法。最后,提出了一种微博预警算法,该算法对给定的新发布的微博,以其作者及已有转发用户的特征就用户对该微博转发量的影响力进行量化,当影响力超过一定阈值时,输出预警信息。该算法可以有效控制敏感微博在网络上的传播及扩散。

关键词: 微博,关键用户,特征加权

Abstract: The paper used user’s characteristics on Sina Weibo to measure a user’s influence on the propagation of microblog,and then proposed an early warning method for microblog.Firstly,we studied the basic characteristics of users whose microblog leads to a large or a small amount of reposts.Then we found the characteristics that can best discriminate between critical users and non-critical users,and used the feature selection method based on information gain to quantify the discrimination for each user characteristic on user critical.Secondly,based on the feature weighting model,a quantization method for user’s influence on the spread of microblog was proposed.Thirdly,a warning method for microblog was proposed.For a given newly released microblog,it sums up the influence value of the author and all other users who have already reposts the microblog.When the value exceeds a certain threshold,it outputs an warning.The microblog warning method can effectively control the propagation and spread for sensitive microblogs.

Key words: Microblog,Critical users,Feature weighting

[1] 徐晓东.微博社区谣言传播和舆情挖掘研究[D].南京:江苏大学,2011
[2] Phuvipadawat S,Murata T.Breaking News Detection and Trac-king in Twitter[C]∥2010 IEEE/WIC/ACM International conference on Web Intelligence and Intelligent Agent Technology.Toronto,Canada:Orland Hoeber,2010:120-123
[3] 邱云飞,程亮.微博突发话题检测方法研究[J].计算机工程,2012,38(9):288-290
[4] Webberley W,Allen S,Whitaker R.Retweeting:A Study ofMessage-Forwarding in Twitter[C]∥2011 Workshop on Mobile and Online Social Networks.Milan,Italy,2011:13-18
[5] Suh B,Hong Li-chan,Pirolli P,et al.Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network[C]∥2010 IEEE Second International Conference on Social Computing.Minneapolis,USA:Justin Zhan,2010:177-184
[6] 郭海霞.新型社交网络信息传播特点和模型分析[J].现代情报,2012,32(1):56-59
[7] Cha,Meeyoung H,Benevenuto F,et al.Meauring User Influence in Twitter:The million follower fallacy[C]∥Proceedings of the 4th International AAAI Conference on Weblogs and Social Media.Washington:William Coben,2010:10-17
[8] 刘庆和,梁正友.一种基于信息增益的特征优化选择方法[J].计算机工程与应用,2011,47(12):130-132
[9] 张旸,路荣,杨青.微博客中转发行为的预测研究[J].中文信息学报,2012,26(4):109-114

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .