计算机科学 ›› 2015, Vol. 42 ›› Issue (5): 237-244.doi: 10.11896/j.issn.1002-137X.2015.05.048

• 人工智能 • 上一篇    下一篇

基于向量场的移动机器人动态路径规划

徐腾飞,罗 琦,王 海   

  1. 南京信息工程大学信息与控制学院 南京210044,南京信息工程大学信息与控制学院 南京210044,南京信息工程大学信息与控制学院 南京210044
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61174077)资助

Dynamic Path Planning for Mobile Robot Based on Vector Field

XU Teng-fei, LUO Qi and WANG Hai   

  • Online:2018-11-14 Published:2018-11-14

摘要: 由于简洁、高效等优点,人工势场法已应用于自主移动机器人的在线实时路径规划,并受到广泛关注。目前,人工势场法在处理静态环境、动态匀速环境下的路径规划方面已有许多成果,但是,机器人在全变速环境下进行在线实时路径规划时,会出现路径冗余、避碰不及等现象。为此,将目标关于机器人的相对加速度因素引入引力势场函数中;在斥力势场函数的基础上融合避碰预测、减速避障策略;最终,机器人能够避免大量无谓避障,当与障碍物相对速度较大时能提前避障,且快速跟踪到目标。仿真结果验证了所提方法的有效性。

关键词: 路径规划,动态避障,移动机器人

Abstract: Due to its simplicity and high efficiency,the artificial potential field method has been widely focused and used for autonomous robots.At present,potential field methods have received many accolades in dealing with path planning in static environments or dynamic uniform environments,but unnecessary obstacle avoidance or collision caused by excessive relative velocity of the mobile robot with respect to obstacle in a non-uniform environment will appear .Thus,this paper defined a new potential function with the relative displacement.The relative velocity and the relative acceleration factors are incorporated into the attractive potential function.The obstacle avoidance prediction and the velocity-decreasing collision avoidance strategy are brought into the repulsion potential function,which make the robot can not only track target with variable motion,but also keep the same movement trend with target and remove largely the unnecessary obstacle avoidance.When the relative velocity of the mobile robot with respect to obstacle is larger,the robot can also take an obstacle avoidance measure in advance.The simulation result verifies the effectiveness of method proposed.

Key words: Path planning,Dynamic obstacle avoidance,Mobile robot

[1] Kang F,Wang Y.Robot Path Planning Based on Hybrid Artificial Potential Field Genetic Algorithm[J].Journal of System Simulation,2006,18(3):774-777
[2] 殷路,尹怡欣.基于动态人工势场法的路径规划仿真研究[J].系统仿真学报,2009,21(11):3325-334
[3] Vadakkepat P,Tan K,Ming-Liang W.Evolutionary artificial potential fields and their application in real time robot path planning[C]∥Proceedings of the 2000 Congress on Evolutionary Computation,2000.IEEE,2000:256-263
[4] Gerke M.Genetic path planning for mobile robots[C]∥Proceedings of the 1999 American Control Conference,1999.IEEE,1999:2424-2429
[5] Liu C,Li D,Yang J.A novel method of mobile robot path planning based on quantum genetic algorithm[C]∥2010 Chinese Conference on Pattern Recognition (CCPR).IEEE,2010:1-5
[6] Hong Z,Liu Y,G Zhong-guo,et al.The dynamic path planning research for mobile robot based on artificial potential field[C]∥ 2011 International Conference on Consumer Electronics,Communications and Networks (CECNet).IEEE,2011:2736-2739
[7] Khatib O.A unified approach for motion and force control of robot manipulators:The operational space formulation[J].IEEE Journal of Robotics and Automation,1987,3(1):43-53
[8] Koren Y,Boren S J.Potential field methods and their inherent limitations for mob ile robot navigation[C]∥ Proceedings of the 1991 IEEE International Conference on Robotics and Automation.Sacrament,California,IEEE,1991:1398-1404
[9] Tilove R B.Local Obstacle Avoidance for Mobile Robots Based on the Method of Artificial Potentials[C]∥Proc.of IEEE Conf.on Robotics and Automation,Nice,France.1990:566-571
[10] Ge S S,Cui Y J.New potential functions for mobile robot path planning[J].IEEE Trans.on Robotics and Automation,2000,16(5):615-620
[11] Jia Q,Wang X.An improved potential field method for pathplanning[C]∥Control and Decision Conference (CCDC),2010 Chinese.IEEE,2010:2265-2270
[12] L Qian-you,Zhang H,Heng W,et al.Application of improved artificial potential field approach in local path planning for mobile robot[J].Computer Engineering and Design,2011,2(4):1411-1418
[13] Ge S S,Cui Y J.Dynamic motion planning for mobile robots using potential field method[J].Autonomous Robots,2002,13(3):207-222
[14] Huang L.Velocity planning for a mobile robot to track a moving target—a potential field approach[J].Robotics and Autonomous Systems,2009,57(1):55-63
[15] 韩永,刘国栋.动态环境下基于人工势场的移动机器人运动规划[J].机器人,2006,28(1):45-49
[16] 潘炼,严文,陶辉,等.基于改进人工势场的移动机器人路径规划[J].计算机测量与控制,2011,19(4):969-974
[17] 谢宏健,王华忠.基于速度分解的移动机器人动态避碰规划[J].华东理工大学自然科学报,2011,37(2):234-238
[18] Zhang Qi,Yue Shi-guang,Yin Quan-jun,et al.Dynamic obstacle-avoiding path planning for robots based on modified potential field method[C]∥Intelligent Computing Theories and Technolo-gy.Springer Berlin Heidelberg,2013:332-342

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .