计算机科学 ›› 2015, Vol. 42 ›› Issue (9): 33-36.doi: 10.11896/j.issn.1002-137X.2015.09.007

• 第十届和谐人机环境联合学术会议 • 上一篇    下一篇

基于LBSN的商业选址推荐系统的研究与实现

屈弘扬,於志文,田苗,郭斌   

  1. 西北工业大学计算机学院 西安710072,西北工业大学计算机学院 西安710072,西北工业大学计算机学院 西安710072,西北工业大学计算机学院 西安710072
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家重点基础研究发展计划(973 计划)(2012CB316400),国家自然科学基金(61332005,61373119,9,61103063)资助

Research and Implementation of Commercial Site Recommendation System Based on LBSN

QU Hong-yang, YU Zhi-wen, TIAN Miao and GUO Bin   

  • Online:2018-11-14 Published:2018-11-14

摘要: 随着智能移动设备的发展和普及,空间定位技术不断成熟,基于位置的社交网络(Location-based Social Network,LBSN)得到了广泛应用。大量用户在LBSN签到,以及针对签到进行的评论不仅记录了用户的时空行为轨迹,也为研究用户行为模式和特征偏好提供了巨大的机会。提出一种基于LBSN签到数据的商业店铺选址推荐系统,首先分析用户在LBSN上的签到时间、签到地点、签到商铺类型3个方面的特征;然后提出4个影响商铺选址的因素:多样性、竞争性、相关性和客流性;最后实现商业选址推荐系统,并根据选址因素生成最优候选。并以此为基础进行相关实验来验证推荐结果,结果符合相关预期。

关键词: LBSN,行为轨迹数据,商业选址

Abstract: With the development and popularization of smart mobile devices,spatial positioning technology continues to develop,and based on this,location-based social network is widely used.The majority of users check in LBSN,and comment on check-in activity,which not only record the spatial-temporal behavior track,but also provide great opportunities for us to study user behavior patterns and characteristics of preference.This paper proposed a commercial site re-commendation system based on LBSN.Firstly,it analysed the characteristics about the check-in time,the check-in location and the category of check-in retail in LBSN.Then it proposed four kinds of factors that affect retail location:diversity,competitive,relevance,passenger flow.Finally the system was implemented that can provide the best candidate based on various factors.The paper used those as the basis for experiments to verify the recommendation result.The results comply with the relevant expectations.

Key words: LBSN,Behavior track data,Commercial site

[1] 於志文,周兴社,郭斌.移动社交网络中的感知计算模型、平台与实践[J].中国计算机学会通讯,2012:8(5):15-20 Yu Zhi-wen,Zhou Xing-she,Guo Bin.Aware computing model,platform and practice of Mobile social networks[J].Communications of China Computer Federation,2012,8(5):15-20
[2] 於志文,於志勇,周兴社.社会感知计算:概念、问题及其研究进展[J].计算机学报,2012,35(1):16-26 Yu Zhi-wen,Yu Zhi-yong,Zhou Xing-she.Socially aware computing[J].Chinese Journal of Computers,2012,5(1):16-26
[3] Zheng Y.Location-based social networks:Users[M]∥Computing with Spatial Trajectories.Springer,New York,2011:243-276
[4] Karamshuk D,Noulas A,Scellato S,et al.Geo-spotting:mining online location-based services for optimal retail store placement[C]∥Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2013:793-801
[5] Jensen P.Analyzing the localization of retail stores with complex systems tools[M]∥Advances in Intelligent Data Analysis VIII.Springer Berlin Heidelberg,2009:10-20
[6] Yu Z,Zhang D,Yang D.Where is the Largest Market:Ranking Areas by Popularity from Location Based Social Networks[C]∥ Ubiquitous Intelligence and Computing,2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC).IEEE,2013:157-162
[7] http://dev.jiepang.com
[8] http://developer.baidu.com/map

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .