计算机科学 ›› 2015, Vol. 42 ›› Issue (9): 56-60.doi: 10.11896/j.issn.1002-137X.2015.09.012

• 第十届和谐人机环境联合学术会议 • 上一篇    下一篇

深度学习中的自编码器的表达能力研究

王雅思,姚鸿勋,孙晓帅,许鹏飞,赵思成   

  1. 哈尔滨工业大学计算机科学与技术学院 哈尔滨150001,哈尔滨工业大学计算机科学与技术学院 哈尔滨150001,哈尔滨工业大学计算机科学与技术学院 哈尔滨150001,哈尔滨工业大学计算机科学与技术学院 哈尔滨150001,哈尔滨工业大学计算机科学与技术学院 哈尔滨150001
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然基金项目(61472103),国家自然基金重点项目(61133003)资助

Representation Ability Research of Auto-encoders in Deep Learning

WANG Ya-si, YAO Hong-xun, SUN Xiao-shuai, XU Peng-fei and ZHAO Si-cheng   

  • Online:2018-11-14 Published:2018-11-14

摘要: 近年来,深度学习框架和非监督学习方法越来越流行,吸引了很多机器学习和人工智能领域研究者的兴趣。从深度学习中的“构造模块”入手,主要研究自编码器的表达能力,尤其是自编码器在数据降维方面的能力及其表达能力的稳定性。从深度学习的基础方法入手,旨在更好地理解深度学习。第一,自编码器和限制玻尔兹曼机是深度学习方法中的两种“构造模块”,它们都可用作表达转换的途径,也可看作相对较新的非线性降维方法。第二,重点探究了对于视觉特征的理解,自编码器是否是一个好的表达转换途径。主要评估了单层自编码器的表达能力,并与传统方法PCA进行比较。基于原始像素和局部描述子的实验验证了自编码器的降维作用、自编码器表达能力的稳定性以及提出的基于自编码器的转换策略的有效性。最后,讨论了下一步的研究方向。

关键词: 深度学习,表达转换,数据降维,单层自编码器

Abstract: Deep learning frameworks and unsupervised learning methods have become increasingly popular and attracted the attention of many researchers in machine learning and artificial intelligence fields.This paper started from the “building-blocks” of deep learning methods and focused on the representation ability research of auto-encoders,especially on auto-encoders’ ability to reduce dimensionality and the stability of their representation ability.We expected that starting from the basis of deep learning can help us understand it better.Firstly,auto-encoder and restricted Boltzmann machine are two "building-blocks" of deep learning methods,both of which can be used to transform representation and be seen as relatively new nonlinear dimensionality reduction methods.Secondly,we investigated whether auto-encoder is a good representation transformation method under the context of understanding visual features,including eva-luating single-layer auto-encoder’s representation ability compared with classic methodology principal component analysis.Experiments based on original pixels and local descriptors demonstrate auto-encoder’s ability to reduce dimensiona-lity,the stability of its representation ability and the effectiveness of proposed AE-based transformation strategy.Fina-lly,future research direction was discussed.

Key words: Deep learning,Representation transformation,Dimensionality reduction,Single-layer auto-encoder

[1] 谭璐.高维数据的降维理论及应用[D].长沙:国防科学技术大学,2005Tan Lu.The theory and application of the dimension reduction on the high-dimensional data set [D].Changsha:National university of defense technology,2005
[2] 蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001 Jiang Zong-li.Introduction to artificial neural networks [M].Bei Jing:Higher Education Press,2001
[3] Hinton G,Salakhutdinov R.Reducing the dimensionality of data with neural networks [J].Science,2006,313(5786):504-507
[4] Le Q V,Ranzato M A,Monga R.Building high-level scale unsupervised learning [C]∥International Conference on Acoustics,Speech and Signal Processing.Vancouver,Canada,2013:8595-8598
[5] Krizhevsky A,Sutskever I,Hinton G.Imagenet classificationwith deep convolutional neural networks [C]∥Advances in Neural Information Processing Systems.California,America,2012:1106-1114
[6] Zeiler M D,Fergus R.Visualizing and Understanding Convolutional Neural Networks [J].arXiv:1311.2901,2013
[7] 朱明,武妍.基于深度网络的图像处理研究[J].电子技术与软件工程,2014(5):101-102 Zhu Ming,Wu Yan.Image processing research based on deep networks [J].Electronic Technology and Software Engineering,2014(5):101-102
[8] Bengio Y.Learning deep architectures for AI [J].Foundations and Trends in Machine Learning,2009,2(1):1-12

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!