计算机科学 ›› 2015, Vol. 42 ›› Issue (11): 123-129.doi: 10.11896/j.issn.1002-137X.2015.11.026

• 第十四届中国多值逻辑与模糊逻辑学术会议 • 上一篇    下一篇

语言真值格值命题逻辑中的α-语义归结方法

张家锋,徐 扬,陈 琴   

  1. 贵州民族大学理学院 贵阳550025,西南交通大学智能控制开发中心 成都610031,贵州财经大学信息学院 贵阳550025
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金项目(61175055,4),贵州省科学技术基金项目(黔科合J字LKB[2012]02号,黔科合J字[2010]2097号)资助

α-Semantic Resolution Method Based on Linguistic Truth-valued Lattice-valued Propositional Logic

ZHANG Jia-feng, XU Yang and CHEN Qin   

  • Online:2018-11-14 Published:2018-11-14

摘要: 语言值智能信息处理是人工智能的一个重要研究方向,基于归结原理的自动推理因易于在计算机上实现而得到广泛研究。为了提高基于语言真值格值逻辑的α-归结原理的效率,将语义归结策略应用于α-归结原理,研究了基于格值逻辑的归结自动推理方法。首先给出了语言真值格值命题逻辑系统的α-语义归结与LnP(X)中相应归结水平的语义归结之间的等价性,并通过实例说明其有效性。接着,给出了语言真值格值命题逻辑系统的α-语义归结算法,并证明了该算法的可靠性和完备性。

关键词: 自动推理,语义归结,语言真值格蕴涵代数,格值逻辑

Abstract: Linguistic-values-based intelligent information processing is one of the most important research directions in artificial intelligence,and resolution-based automated reasoning has been extensively studied because of its easy implement on computer.For improving the efficiency of α-resolution principle in linguistic truth-valued lattice-valued logic,we applied the semantic resolution strategy to α-resolution and investigated the resolution-based automated reasoning methodin lattice-valued logic.Firstly,the equivalence of α-semantic resolution in linguistic truth-valued lattice-valued propositional logic LV(n×2)P(X) and the α-semantic resolution in corresponding resolution level for LnP(X) was given,and the effectiveness of α-semantic resolution method was illustrated through an example.Subsequently,the semantic resolution algorithm for this resolution was investigated,and sound theorem and weak complete theorem of this semantic resolution method were proved.

Key words: Automated reasoning,Semantic resolution,Linguistic truth-valued lattice implication algebra,Lattice-valued logic

[1] Robinson J P.A Machine-oriented Logic Based on the Resolution Principle[J].J.ACM,1965,12(1):23-41
[2] 刘叙华,姜云飞.定理机器证明[M].北京:科学出版社,1987 Liu Xu-hua,Jiang Yun-fei.Mechanical Theorem Proving[M].Beijing:Chinese Science Press,1987
[3] Xu Yang,Ruan Da,Kerre Etienne E,et al.α-Resolution Principle Based on Lattice-valued Propositional Logic LP(X)[J].Information Sciences,2000,130:195-222
[4] Xu Yang,Ruan Da,Kerre Etienne E,et al.α-Resolution Principle Based on First-order Lattice-valued Logic LF(X)[J].Information Sciences,2001,132:221-239
[5] 徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27 Xu Yang.Lattice Implication Algebra[J].Journal of Southwest Jiaotong University,1993,28(1):20-27
[6] Pei Zheng,Ruan Da,Liu Jun,et al.Linguistic Values-based Intelligent Information Processing:Theory,Methods and Applications[M].Groningen:Atlantic Press,2009
[7] Xu Yang,Chen Shu-wei,Ma Jun.Linguistic Truth-valued Lattice Implication Algebra and its Properties[C]∥IMACS Multi Conference on Computational Engineering in System Application.Beijing:Tsinghua University press,2006:1413-1418
[8] Xu Yang,Chen Shu-wei,Liu Jun,et al.Weak Completeness of Resolution in a Linguistic Truth-Valued Propositional Logic[C]∥Melin P,Castillo O,Aguilar L T,et al.,eds.12th International Fuzzy Systems Association World Congress:Theoretical Advances and Applications of Fuzzy Logic and Soft Computing.Berlin Heidelberg,Springer,2007:358-366
[9] 李晓冰.基于语言真值格值逻辑的归结自动推理研究[D].成都:西南交通大学,2008 Li Xiao-bing.The Study of Resolution Automated Reasoning Based on Linguistic Truth-valued Logic[D].Chengdu:Southwest Jiaotong University,2008
[10] 王伟.基于L6P(X)的归结原理的研究[D].成都:西南交通大学,2007 Wang Wei.The Study of Resolution Principle Based on L6P(X)[D].Chengdu:Southwest Jiaotong University,2007
[11] 李晓冰,邱小平,徐扬.格值命题逻辑系统L9P(X)中的自动推理算法[J].计算机工程与应用,2008,44(10):6-9 Li Xiao-bing,Qiu Xiao-ping,Xu Yang.Automated Reasoning Algorithm in Lattice-valued Propositional Logic System L9P(X)[J].Computer Engineering and Applications,2008,44(10):6-9
[12] Xu Wei-tao,Xu Yang,Li Tian-rui.The Structure of Generalized Literals in Linguistic Truth-Valued Propositional Logic Systems[C]∥Vanhoof K,Ruan Da,Li Tian-rui,et al.,eds.2009 International Conference on Intelligent Systems and Knowledge Engineering.Hasselt,Belgium,2009:631-636
[13] 许伟涛.基于格值逻辑的语言真值α-广义线性归结自动推理研究[D].成都:西南交通大学,2011 Xu Wei-tao.The study of linguistic truth-valued α-generalized liner resolution automated reasoning based on lattice-valued logic[D].Chengdu:Southwest Jiaotong University,2011
[14] Zhong Xiao-mei,Xu Yang,Liu Jun,et al.General Form of α-Resolution Based on Linguistic Truth-valued Lattice-valued Logic[J].Soft Computing,2012,10:1767-1781
[15] 钟小梅.基于格值逻辑的α-准锁语义归结自动推理研究[D].成都:西南交通大学,2012 Zhong Xiao-mei.The Study of α-Qusi-lock Semantic Resolution Automated Reasoning Based on Lattice-valued Logic[D].Chengdu:Southwest Jiaotong University,2012
[16] He Xing-xing,Xu Yang,Liu Jun.α-Generalized Lock Resolution Method in Linguistic Truth-valued Lattice-valued Logic[J].International Journal of Computational Intelligence Systems,2012,5(6):1120-1134
[17] 许伟涛,徐扬.语言真值格值命题逻辑系统中广义文字的归结判定[J].计算机科学,2013,40(2):208-211 Xu Wei-tao,Xu Yang.Resolution Determination of Generalized Literals in Linguistic Truth-valued Lattice-valued Propositional Logic System[J].Computer Science,2013,40(2):208-211
[18] 徐扬,秦克云.格值命题逻辑(Ⅰ)[J].西南交通大学学报,1993,28(1):123-128 Xu Yang,Qin Ke-yun.Lattice-valued Propositional Logic (I)[J].Journal of Southwest Jiaotong University,1993,28(1):123-128
[19] 秦克云,徐扬.格值命题逻辑(Ⅱ)[J].西南交通大学学报,1994,29(2):22-27 Qin Ke-yun,Xu Yang.Lattice-valued Propositional Logic (II)[J].Journal of Southwest Jiaotong University,1994,29(2):22-27
[20] 张家锋,徐扬,何星星.格值语义归结推理方法[J].计算机科学,2011,38(9):201-204 Zhang Jia-feng,Xu Yang,He Xing-xing.Lattice-valued Semantic Resolution Reasoning[J].Computer Science,2011,38(9):201-204

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .