计算机科学 ›› 2016, Vol. 43 ›› Issue (7): 319-323.doi: 10.11896/j.issn.1002-137X.2016.07.059

• 图形图像与模式识别 • 上一篇    下一篇

一种基于颜色拮抗感受野的轮廓检测模型

吴璟莉,刘袁静   

  1. 广西师范大学广西多源信息挖掘与安全重点实验室 桂林541004;广西师范大学计算机科学与信息工程学院 桂林541004,广西师范大学计算机科学与信息工程学院 桂林541004
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61363035,61272535),广西自然科学基金项目(2015GXNSFAA139288,2013GXNSFBA019263),“八桂学者”工程专项,广西多源信息挖掘与安全重点实验室系统性研究基金项目(14-A-03-02),广西区域多源信息集成与智能处理协同创新中心资助

Contour Detection Model Based on Color Opponent Receptive Field

WU Jing-li and LIU Yuan-jing   

  • Online:2018-12-01 Published:2018-12-01

摘要: 轮廓检测在目标识别、图像分割和模式识别等图像分析领域有着非常重要的意义。根据视觉的生物学原理,研究人员已提出了针对灰度图像的轮廓检测方法,并取得了较好的检测结果。但是,颜色信息可以表示出图像的大部分信息,在轮廓检测中发挥的作用不可忽视。杨开富等人提出的CO模型可以较好地提取图像中的目标轮廓,但该模型的计算效率还有待提高。文中提出一种轮廓检测模型CRFM(Color-opponent Receptive Field Model),该模型依据视觉信息处理机制,分别模拟视网膜神经节细胞和外侧膝状体细胞感受野的响应。此外,CRFM采用两个不同尺度的高斯偏导函数之差来模拟初级视皮层细胞的颜色双拮抗感受野响应,拟合视觉特征,且由于模拟双拮抗感受野的滤波器通常产生较小的数值,因此加快了其与图像信息卷积的计算速度,降低了运行开销。利用BSDS300数据库的图像进行实验,结果表明,CRFM模型能够获得较好的轮廓检测效果,且具有较CO模型更高的执行效率,具有较好的实用性。

关键词: 感受野,轮廓检测,颜色拮抗,模型

Abstract: It is very significant for contour detection to be widely used in such fields as target recognition,image segmentation and pattern recognition,etc.According to the principle of visual biology,researchers put forward contour detection methods for gray image,which achieved good results.However,the color information can represent most of the image information,and the role of if cannot be ignored when detecting contour.The CO model proposed by Kaifu Yang can extract the target contour from the image,but the execution efficiency of the model still need to be improved.In this paper,a contour detection model CRFM (Color-opponent Receptive Field) was proposed.According to visual information processing mechanism,the model simulates the response from receptive field of the retinal ganglion cells and the one from the lateral geniculate nucleus cells respecitvely.In addition,CRFM uses the partial derivative difference between two Gaussian functions having different scales to simulate the response of the double opponent receptive field in the primary visual cortex and the visual characteristics.Because the filter,which simulates the double opponent receptive field,usually produces small value,the speed is improved for computing the convolution between the filter and the image information,and the execution cost is decreased.BSDS300 database was used in the experiments.Results show that the CRFM model can obtain better performance,and has higher execution efficiency than the CO model which is very practical in realisteic application.

Key words: Receptive field,Contour detection,Color opponent,Model

[1] Marr D,Hildreth E.Theory of edge detection[J].Proceedings of the Royal Society of London,Series B,Biological Sciences,1980,207(1167):187-217
[2] Tang Qi-ling,Sang Nong,Zhang Tian-xu.Extraction of salient contours from cluttered scenes[J].Pattern recognition,2007,40(11):3100-3109
[3] Marcelja S.Mathematical description of the responses of simple cortical cells [J].JOSA,1980,70(11):1297-1300
[4] Jones J P,Palmer L A.An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[J].Journal of Neurophysiology,1987,58(6):1233-1258
[5] Smyth D,Willmore B,Baker G E,et al.The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation[J].The Journal of Neuroscience,2003,23(11):4746-4759
[6] Rodieck R W,Stone J.Analysis of receptive fields of cat retinal ganglion cells[J].Journal of Neurophysiology,1965,28(5):833-849
[7] Li Chao-yi.Integration fields beyond the classical receptivefield:organization and functional properties[J].Physiology,1996,11(4):181-186
[8] Grigorescu C,Petkov N,Westenberg M A.Contour detection based on nonclassical receptive field inhibition[J].IEEE Transac-tions on Image Processing,2003,12(7):729-739
[9] Yang Kai-fu,Gao Shao-bing,Li Chao-yi,et al.Efficient colorboundary detection with color-opponent mechanisms[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2013:2810-2817
[10] Kaiser P K,Boynton R M.Human color vision[J].Optical Society of America,1996,8(6):50-94
[11] Conway B R,Chatterjee S,Field G D,et al.Advances in color science:from retina to behavior[J].The Journal of neuroscience,2010,30(45):14955-14963
[12] Koenderink J J,Van de Grind W A,Bouman M A.Opponent color coding:A mechanistic model and a new metric for color space[J].Kybernetik,1972,10(2):78-98
[13] Solomon S G,Lennie P.The machinery of colour vision[J].Nature Reviews Neuroscience,2007,8(4):276-286
[14] Derrington A M,Krauskopf J,Lennie P.Chromatic mechanisms in lateral geniculate nucleus of macaque[J].The Journal of Physiology,1984,357(1):241-265
[15] Shapley R,Hawken M J.Color in the cortex:single-and double-opponent cells[J].Vision research,2011,51(7):701-717
[16] Shapley R,Hawken M.Neural mechanisms for color perception in the primary visual cortex[J].Current opinion in neurobiology,2002,12(4):426-432
[17] Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698
[18] Martin D,Fowlkes C,Tal D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥ Eighth IEEE International Conference on Computer Vision,2001(ICCV 2001).IEEE,2001:416-425

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!