计算机科学 ›› 2017, Vol. 44 ›› Issue (1): 71-74.doi: 10.11896/j.issn.1002-137X.2017.01.013

• 2016第六届中国数据挖掘会议 • 上一篇    下一篇

一种基于用户距离改进的线性影响力传播模型

蔡国永,裴广战   

  1. 桂林电子科技大学计算机与信息安全学院 桂林541004,桂林电子科技大学计算机与信息安全学院 桂林541004
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61540053),广西研究生教育创新计划资助

Improved Linear Influence Diffusion Model Based on Users’ Distance

CAI Guo-yong and PEI Guang-zhan   

  • Online:2018-11-13 Published:2018-11-13

摘要: 根据在线社交网络中用户的历史行为进行信息传播的预测是当前研究的热点之一,然而传统的传播模型仅解释了信息在社交网络中的传播规律,不具备信息传播预测能力。Jaewan Yang和Jwe Leskovec根据未激活的用户会受到激活用户的影响,提出了线性影响力模型LIM(Linear Influence Model),但是LIM模型在信息传播的过程中只考虑了时间因素,忽略了信息在传播过程中的空间因素,即用户间的相互关系。首先引入社交网络中用户间距离的度量,并结合距离的度量对LIM模型进行了改进,提出了基于距离正则化的LIM模型,即d-LIM模型。真实数据集上的对比实验表明,d-LIM模型能获得更准确的预测结果。

关键词: 社交网络,影响力,传播预测

Abstract: The prediction of information diffusion based on historical behavior of users in on-line social network is one of the hot spots of current research.However,the traditional propagation models can only explain the diffusion regular pattern of information in social networks,and it cannot predict the dissemination of information.Since uninfected users will be affected by infected users,Jaewan Yang and Jwe Leskovec proposed a linear influence model (LIM),but LIM model only considers the time factor in the process of information dissemination,and it ignores the spatial information,namely the relationship of users.Therefore,firstly,a measure of users’ distance in social network was introduced in this paper.Combining the distance measure with LIM model,we proposed an improved LIM model based on distance regula-rization,namely d-LIM model.Through experiments on real data sets,the result shows that d-LIM model can achieve better prediction accuracy than the compared methods.

Key words: Social network,Influence,Diffusion prediction

[1] SAITO K,NAKANO R,KIMURA M.Prediction of information diffusion probabilities for independent cascade model[M]∥Knowledge-based Intelligent Information and Engineering Systems.Springer Berlin Heidelberg,2008:67-75.
[2] CHEN W,WANG C,WANG Y.Scalable influence maximization for prevalent viral marketing in large-scale social networks[C]∥Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2010:1029-1038.
[3] LI Dong,XU Zhi-ming,LI Sheng,et al.A survey on information diffusion in online social networks [J].Chinese Journal of Computers,2014,37(1):189-206.(in Chinese) 李栋,徐志明,李生,等.在线社会网络中信息扩散[J].计算机学报,2014,37(1):189-206.
[4] YANG J,COUNTS S.Predicting the Speed,Scale,and Range of Information Diffusion in Twitter[J].ICWSM,2010,10:355-358.
[5] WANG F,WANG H,XU K.Diffusive logistic model towards predicting information diffusion in online social networks[C]∥2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW).IEEE,2012:133-139.
[6] GUILLE A,HACID H.A predictive model for the temporal dynamics of information diffusion in online social networks[C]∥Proceedings of the 21st International Conference Companion on World Wide Web.ACM,2012:1145-1152.
[7] BOURIGAULT S,LAGNIER C,LAMPRIER S,et al.Learning social network embeddings for predicting information diffusion[C]∥Proceedings of the 7th ACM International Conference on Web Search and Data Mining.ACM,2014:393-402.
[8] WANG Y,XIANG G,CHANG S K.Sparse Multi-Task Lear-ning for Detecting Influential Nodes in an Implicit Diffusion Network[C]∥AAAI.2013.
[9] LIN Y,RAZA A A,LEE J Y,et al.Influence propagation:patterns,model and a case study[M]∥Advances in Knowledge Discovery and Data Mining.Springer International Publishing,2014:386-397.
[10] WANG F,WANG H,XU K,et al.Characterizing information diffusion in online social networks with linear diffusive model[C]∥2013 IEEE 33rd International Conference on Distributed Computing Systems (ICDCS).IEEE,2013:307-316.
[11] YANG J,LESKOVEC J.Modeling information diffusion in implicit networks[C]∥2010 IEEE 10th International Conference on Data Mining (ICDM).IEEE,2010:599-608.
[12] MA H,ZHOU D,LIU C,et al.Recommender systems with social regularization[C]∥Proceedings of the Fourth ACM International Conference on Web Search and Data Mining.ACM,2011:287-296.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .