计算机科学 ›› 2017, Vol. 44 ›› Issue (8): 27-30.doi: 10.11896/j.issn.1002-137X.2017.08.005

• 2016 中国计算机图形学会议 • 上一篇    下一篇

基于Canny优化的卡通视频分割与矢量化

李瑞龙,梁缘,张松海   

  1. 清华大学计算机系 北京100084,清华大学计算机系 北京100084,清华大学计算机系 北京100084
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金项目(61373069)资助

Cartoon Animations Segmentation and Vectorization Based on Canny Optimization

LI Rui-long, LIANG Yuan and ZHANG Song-hai   

  • Online:2018-11-13 Published:2018-11-13

摘要: 矢量化的视频图像相对于光栅化的视频图像具有储存容量小、缩放不失真等诸多优点。相对于真实视频,卡通视频因色块明显、线条清晰等特点更适合于进行矢量化处理。基于卡通的特性提出了一种基于Canny边缘检测的优化分割算法。主要针对Canny边缘提取不封闭的特点进行优化,并将其用于图像分割。提出了一种算法来提取卡通动画的素材,并为卡通动画构建素材库。通过素材重用的方式大大地缩小了卡通视频的储存空间,并且很好地解决了卡通视频矢量化问题中极易产生的帧间不一致的问题。实现了一个全自动地进行卡通视频矢量化的系统,其中包括卡通视频的镜头分割、素材库的构建等过程。该系统能够适应多种卡通视频,并能对视频中的细节区域产生较好的效果。

关键词: 矢量化,图像分割,卡通视频,帧间一致性

Abstract: Vectorization of image/video has many potential advantages comparing to a raster format,such as higher compression ratios for storage and allowing display on devices with differing capabilities.Cartoon animations are more suitable for vectorizing than the videos from real world because of their clear edge and region.We proposed a new algorithm of image segmentation based on Canny operator,solved the problem of discontinuity of edge detection and created a material box for each cartoon animation.We proposed a way to low the compression ratio by reusing the material of cartoon in the material box,and also solved the problem of flicker during the vectorization with the material box.We made a system to automaticly vectorize the cartoon animations including the shot segmentation,active region extraction and creating the material box.Our system can give good result on different kinds of cartoon,even those with complex texture in it.

Key words: Vectorization,Image segmentation,Cartoon animation,Frames coherence

[1] SUN J,LIANG L,WEN F,et al.Image vectorization using optimized gradient meshes[J].ACM Transactions on Graphics,2007,26(3):59-82.
[2] ZITNICK C L,JOJIC N,KANG S B.Consistent Segmentation for Optical Flow Estimation[C]∥IEEE International Confe-rence on Computer Vision.2005:1308-1315.
[3] LECOT G,LEVY B.Ardeco:automatic region detection and con-version[C]∥Eurographics Symposium on Rendering Techniques,Nicosia,Cyprus.2006:349-360.
[4] ORZAN A,BOUSSEAU A,WINNEM,et al.Diffusion Curves:A Vector Representation for Smooth-Shaded Images[J].Communications of the ACM,2008,56(7):101-108.
[5] CANNY J.A Computational Approach to Edge Detection-Rea-dings in Computer Vision[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,PAMI-8(6):679-698.
[6] LAI Y K,HU S M,MARTIN R R.Automatic and Topology-Preserving Gradient Mesh Generation for Image Vectorization[J].ACM Transactions on Graphics,2009,28(3):341-352.
[7] KOPF J,LISCHINSKI D.Depixelizing pixel art[C]∥ACMSIGGRAPH Conference.2011:76-79.
[8] SUN J,LIANG L,WEN F,et al.Image vectorization using optimized gradient meshes[J].ACM Transactions on Graphics,2007,26(3):59-82.
[9] QU Y,WONG T T,HENG P A.Manga colorization[J].ACM Transactions on Graphics,2006,25(3):1214-1220.
[10] 'KORA D,BURINEK J,RA J.Colorization of black-and-white cartoons[J].Image & Vision Computing,2005,23(9):767-782.
[11] 'KORA D,BURINEK J,RA J.Sketching cartoons by example http://dx.doi.org/10.2312/SBM/SBM 05/027-033.
[12] 'KORA D,BURINEK J,RA J.Video Codec for Classical Cartoon Animations with Hardware Accelerated Playback[M]∥Advances in Visual Computing.Springer Berlin Heidelberg,2005:43-50.
[13] ZHANG S H,CHEN T,ZHANG Y F,et al.Vectorizing Cartoon Animations[J].IEEE Transactions on Visualization & Computer Graphics,2009,15(4):618-629.
[14] KUMAR M P,TORR P H S,Zisserman A.Learning Layered Motion Segmentations of Video[C]∥Tenth IEEE International Conference on Computer Vision.2005:33-40.
[15] XIAO J,SHAH M.Motion Layer Extraction in the Presence of Occlusion Using Graph Cut[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2004:972-979.
[16] RRBIN J M,RICHARDS W A.Color vision and image intensities:When are changes material?[J].Biological Cybernetics,1982,45(3):215-226.
[17] CHANG J,WEI D,III J W F.A Video Representation Using Temporal Superpixels[C]∥IEEE Conference on Computer Vision & Pattern Recognition.IEEE,2013:2051-2058.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .