计算机科学 ›› 2017, Vol. 44 ›› Issue (9): 34-39.doi: 10.11896/j.issn.1002-137X.2017.09.006

• CRSSC-CWI-CGrC 2016 • 上一篇    下一篇

基于Local约简的序贯三支分类器

鞠恒荣,李华雄,周献中,黄兵,杨习贝   

  1. 南京大学工程管理学院 南京210093,南京大学工程管理学院 南京210093;南京大学智能装备新技术研究中心 南京210093,南京大学工程管理学院 南京210093;南京大学智能装备新技术研究中心 南京210093,南京审计大学审计科学研究院 南京211815,江苏科技大学计算机科学与工程学院 镇江212003
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(71671086,7,61572242,0,71171107,6),江苏省普通高校学术学位研究生科研创新计划项目(KYLX16_0021)资助

Sequential Three-way Classifier with Local Reduction

JU Heng-rong, LI Hua-xiong, ZHOU Xian-zhong, HUANG Bing and YANG Xi-bei   

  • Online:2018-11-13 Published:2018-11-13

摘要: 序贯三支决策是三支决策理论近年发展起来的一种新型决策方法。传统的序贯三支决策方法鲜有针对序贯信息粒的构建和其在分类学习中的应用的研究。针对这两个问题,研究了Local约简与Global约简之间的内在序贯性,并以此构建了具有约简特性的序贯信息粒。在此基础上设计了一种序贯三支分类器。实验结果表明,该序贯三支分类器不仅能很好地在合适信息粒上进行分类,而且较传统的分类算法提高了数据集的分类精度。

关键词: 分类器,Local约简,序贯,粗糙集,三支决策

Abstract: Sequential three-way decision is a novel decision approach of three-way decision theory in recent years.Howe-ver,in classical sequential three-way decision research,little attention was paid to two important issues,one is the construction of sequential information granule,and the other is the application in classification learning.To address such issues,the intrinsic sequential properties of local and global reductions were studied firstly in this paper.Based on such properties,the sequential information granule was constructed with reduct’s property.Furthermore,a sequential three-way classifier was proposed and designed.The experimental results show that,the proposed classifier is not only good at making classification at an appropriate information granule,but it can also improves the classification accuracy when compared with several classical classifiers.

Key words: Classifier,Local reduction,Sequential,Rough set,Three-way decision

[1] LURIE J D,SOX H C.Principles of medical decision making[J].Spine,1999,24(5):493-498.
[2] ZHANG H R,MIN F.Three-way recommender systems based on random forests[J].Knowledge Based Systems,2016,91:275-286.
[3] WELLER A C.Editorial peer review:Its strengths and weak-ness[M].Medford,NJ:Information Today,2001.
[4] YAO Y Y,WONG S K M.A decision theoretic framework for approximating concepts[J].International Journal of Man-machine Studies,1992,37:793-809.
[5] YAO Y Y.The superiority of three-way decisions in probabilistic rough set models[J].Information Sciences,2011,181:1080-1096.
[6] JU H R,YANG X B,YU H L,et al.Research on attribute reduction criteria in decision-theoretic rough set[J].Journal of Nanjing Normal University (Natural Science Edition),2015,38(1):41-47.(in Chinese) 鞠恒荣,杨习贝,于化龙,等.决策粗糙集的属性约简准则研究[J].南京师范大学学报(自然科学版),2015,38(1):41-47.
[7] JIA X Y,LIAO W H,TANG Z M,et al.Minimum cost attribute reduction in decision-theoretic rough set models[J].Information Sciences,2013,219:151-167.
[8] JIA X Y,TANG Z M,LIAO W H,et al.On an optimization representation of decision-theoretic rough set model[J].International Journal of Approximate Reasoning,2014,55:156-166.
[9] DOU H L,YANG X B,SONG X N,et al.Decision-theoreticrough set:A multicost strategy[J].Knowledge Based Systems,2016,91:71-83.
[10] JU H R,YANG X B,YU H L,et al.Cost-sensitive rough set approach[J].Information Sciences,2016,355-356:282-298.
[11] LIANG D C,LIU D.Deriving three-way decisions from intui-tionistic fuzzy decision-theoretic rough sets[J].Information Sciences,2015,300:28-48.
[12] LIU D,LIANG D C,WANG C C.A novel three-way decision model based on incomplete information system[J].Knowledge Based Systems,2016,91:32-45.
[13] YAO Y Y.Granular computing and sequential three-way decisions[M]∥Lingras P,Wolski M,Cornelis C,et al.,eds.Rough Sets and Knowledge Technology.Springer Berlin Heidelberg,2013:16-27.
[14] YAO Y Y,DENG X F.Sequential three-way decisions with pro-babilistic rough sets[C]∥Wang Y,Celikyilmaz A,Kinsner W,et al.,eds.IEEE International Conference on Cognitive Infermation & Cognitive Computing.IEEE,2011:120-125.
[15] LI H X,ZHOU X Z,HUANG B,et al.Cost-sensitive three-way decision:A sequential strategy[M]∥Lingras P,Wolski M,Cornelis C,et al.,eds.Rough Sets and Knowledge Technology .Springer Berlin Heidelberg,2013:325-337.
[16] LI H X,ZHANG L B,HUANG B,et al.Sequential three-way decision and granulation for cost-sensitive face recognition[J].Knowledge Based Systems,2016,91:241-251.
[17] ZHANG L B,LI H X,ZHOU X Z,et al.Cost-sensitive sequential three-way decision for face recognition[M]∥Kryszkiewicz M,Cornelis C,Ciucci C,et al.,eds.Rough Sets and Intelligent Systems Paradigms.Springer International Publishing, 2014:375-383.
[18] PAWLAK Z.Rough sets-theoretical aspects of reasoning about data[M].Dordrecht:Kluwer Academic,1991.
[19] JU H R,YANG X B,SONG X N,et al.Dynamic updating multigranulation fuzzy rough set:Approximations and reducts[J].International Journal of Machine Learning and Cybernetics,2014,5(6):981-990.
[20] JU H R,YANG X B,DOU H L,et al.Variable precision multigranulation rough set and attributes reduction[M]∥Peters J F,Skowron A,Li T R,et al.,eds.Transactions on Rough Set XVIII .Springer Berlin Heidelberg,2014:52-68.
[21] CHEN D G,ZHAO S Y.Local reduction of decision system with fuzzy rough sets[J].Fuzzy Sets and Systems,2010,161:1871-1883.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .