计算机科学 ›› 2017, Vol. 44 ›› Issue (9): 45-48.doi: 10.11896/j.issn.1002-137X.2017.09.008

• CRSSC-CWI-CGrC 2016 • 上一篇    下一篇

一种基于决策粗糙集的模糊C均值聚类数的确定方法

石文峰,商琳   

  1. 南京大学计算机科学与技术系 南京210023计算机软件新技术国家重点实验室南京大学 南京210023,南京大学计算机科学与技术系 南京210023计算机软件新技术国家重点实验室南京大学 南京210023
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61672276),江苏省自然科学基金(BK20161406)资助

Determining Clustering Number of FCM Algorithm Based on DTRS

SHI Wen-feng and SHANG Lin   

  • Online:2018-11-13 Published:2018-11-13

摘要: Fuzzy C-Means(FCM)是模糊聚类中聚类效果较好且应用较为广泛的聚类算法,但是其对初始聚类数的敏感性导致如何选择一个较好的C值 变得十分重要。因此,确定FCM的聚类数是使用FCM进行聚类分析时的一个至关重要的步骤。通过扩展决策粗糙集模型进行聚类的有效性分析,并进一步确定FCM的聚类数,从而避免了使用FCM时不好的初始化所带来的影响。文中提出了一种基于扩展粗糙集模型的模糊C均值聚类数的确定方法,并通过图像分割实验来验证聚类的效果。实验通过比对不同聚类数下分类结果的代价获得了一个较好的分割结果,并将结果与Z.Yu等人于2015年提出的蚁群模糊C均值混合算法(AFHA)以及提高的AFHA算法(IAFHA)进行对比,结果表明所提方法的聚类结果较好,图像分割效果较明显,Bezdek分割系数比AFHA和IAFHA算法的更高,且在Xie-Beni系数上也有较大优势。

关键词: 模糊C均值,决策粗糙集,图像分割

Abstract: Fuzzy C-Means(FCM),as the most popular algorithm of the soft clustering,has been extensively used to make compact and well separated clusters.However,its sensitivity to initial cluster number makes choosing a better C value become very important.So it is an important step to determine the number of FCM clustering when we use FCM to do cluster analysis.In this paper,the extended decision-theoretic rough sets(DTRS) model is applied for the purpose of clustering validity analysis which could overcome the defect of the FCM algorithm.We proposed the method for determining clustering number of FCM algorithm based on DTRS,and we verified the effect of the clustering by image segmentation.Good segmentation results can be obtained when we compare the cost of different number of clusters.We compared our results with the ant colony fuzzy c-means hybrid algorithm (AFHA),which was proposed by Z.Yu et al in 2015,and the improved AFHA (IAFHA).The experimental results show that our clustering result is better in Bezdek partition coefficient with a higher value than AFHA and IAFHA algorithms,and in the Xie-Beni index as well.

Key words: Fuzzy C-Means,Decision-theoretic rough sets,Image segmentation

[1] DUNN J C.A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics,1974,3(3):32-57.
[2] BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].Kluwer Academic Publishers,1981.
[3] PAWLAK Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11(5):341-356.
[4] YAO Y,WONG S K M.A decision theoretic framework for approximating concepts[J].International Journal of Man-machine Studies,1992,37(6):793-809.
[5] ZHAO W Q,ZHU Y L,GAO W.Information filtering modelbased on decision-theoretic rough set theory[J].Computer Engineering and Applications,2007,43(7):185-187.(in Chinese) 赵文清,朱永利,高伟.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187.
[6] JIA X,LIAO W,TANG Z,et al.Minimum cost attribute reduction in decision-theoretic rough set models[J].Information Sciences an International Journal,2013,9(1):151-167.
[7] LIU D,YAO Y,LI T.Three-way investment decisions with decision-theoretic rough sets[J].International Journal of Computational Intelligence Systems,2011,4(1):66-74.
[8] JIA X,ZHENG K,LI W,et al.Three-way decisions solution to filter spam email:an empirical study[M]∥Rough Sets and Current Trends in Computing.Springer Berlin Heidelberg,2012:287-296.
[9] LINGRAS P,CHEN M,MIAO D.Rough cluster quality index based on decision theory[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(7):1014-1026.
[10] YU H,LIU Z,WANG G.Automatically determining the number of clusters using decision-theoretic rough set[C]∥ International Conference on Rough Sets and Knowledge Technology.Banff,Canada,2011:504-513.
[11] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Eighth IEEE International Conference on Computer Vision,2001(ICCV 2001).IEEE,2001:416-423.
[12] YU Z,AU O C,ZOU R,et al.An adaptive unsupervised approach toward pixel clustering and color image segmentation[J].Pattern Recognition,2010,43(5):1889-1906.
[13] BEZDEK J C.Cluster validity with fuzzy sets[J].Journal of Cybernetics,1974,3(3):58-73.
[14] BEZDEK J C.Mathematical models for systematics and taxonomy[C]∥Proceedings of Eighth International Conference on Numerical Taxonomy.1975:143-166.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .