计算机科学 ›› 2017, Vol. 44 ›› Issue (9): 49-52.doi: 10.11896/j.issn.1002-137X.2017.09.009

• CRSSC-CWI-CGrC 2016 • 上一篇    下一篇

基于软K段主曲线的LPR字符特征的提取方法

焦娜   

  1. 华东政法大学信息科学与技术系 上海201620
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家社科基金青年项目(13CFX049),上海高校青年教师培养资助

Extraction Method of LPR Characters Features Based on Soft K-segments Algorithm for Principal Curves

JIAO Na   

  • Online:2018-11-13 Published:2018-11-13

摘要: 车牌识别是智能交通系统的重要组成部分,提高车牌字符识别率的关键在于提取字符的特征。主曲线是主成分分析的非线性推广,它是通过数据分布“中间”并满足“自相合”的光滑曲线。通过对现有主曲线算法的分析可知:软K段主曲线算法对提取分布在弯曲度很大或相交曲线周围的数据的主曲线的效果较好。因此,尝试用该主曲线算法来提取车牌字符的结构特征。实验结果表明,利用该主曲线算法来提取车牌识别的结构特征能够取得较好的实验效果。所提方法为提取 车牌字符特征的研究提供了一条新途径。

关键词: 软K段主曲线算法,结构特征,特征选取

Abstract: License plate recognition is an important part of intelligent transportation systems.In order to improve the recognition rate of LPR characters,extraction of features are critical.Principal curves are nonlinear generalizations of principal components analysis.They are smooth self-consistent curves that pass through the “middle” of the distribution.By analysis of existed principal curves,we learned that a soft K-segments algorithm for principal curves exhibits good performance in such situations in which the data sets are concentrated around a highly curved or self-intersecting curves.Therefore,we attemptd to use the algorithm to extract structural features of LPR characters.Experiment results show that the algorithm is feasible for extraction of structural features of LPR characters.The proposed method can provide a new approach to the research for extraction of LPR characters features.

Key words: Soft K-segments algorithm for principal curves,Structural features,Features extraction

[1] HASTIE T.Principal curves and surfaces[J].Principal Curves & Surfaces,1984.
[2] BANFIELD J D,RAFTERY A E.Ice floe identification in satellite images using mathematical morphology and clustering about principal curves[J].Journal of the American Statistical Association,1992,87(417):7-16.
[3] KEGL B,KRZYZAK A,et al.A polygonal Line algorithm for constructing principal curves[C]∥Proceedings of Neural Information Processing System.Denver Colorado,USA:Computer Press,1999:501-507.
[4] VERBEEK J J,VLASSIS N,KROSE B.A k-segments algori-thm for finding principal curves[J].Pattern Recognition Letters,2002,23(8):1009-1017.
[5] VERBEEK J J,VLASSIS N,KROSE B.A soft k-segments algorithm for principal curves[M]∥ Artificial Neural Networks-ICANN 2001.Springer Berlin Heidelberg,2001:450-456.
[6] DELICADO P.Another look at principal curves and surfaces[J].Journal of Multivariate Analysis,2001,77(1):84-116.
[7] ZHANG J P,WANG Y.An Overview of Principal Curves[J].Chinese Journal of Computers,2003,6(2):129-146.(in Chinese) 张军平,王珏.主曲线研究综述[J].计算机学报,2003,6(2):129-146.
[8] BAS E,ERDOGMUS D.Principal curves as skeletons of tubular objects:locally characterizing the structures of axons[J].Neuroinformatics,2011,9(2/3):181-191.
[9] WANG H N,LEE T C M.Extraction of curvilinear features fromnoisy point patterns using principal curves[J].Pattern Recognition Letter,2008,29(16):2078-2084.
[10] REINHARD K,NIRANJAN M.Parametric subspace modeling of speech transitions[J].Speech Communication,1999,27(1):19-42.
[11] ZHANG J P,WANG X D,KRUGER U,et al.Principal curve algorithms for partitioning high-dimensional data spaces[J].IEEE Transactions on Neural Networks,2011,22(3):367-380.
[12] ZHANG H Y,MIAO D Q,XIA F C,et al.Automatic Recognition System of Bills Based on Principal Curves[J].Journal of Information and Computational Science,2004,1(2):199-204.
[13] ZHANG J P,CHEN D W,KRUGER U.Adaptive constraint k-segment principal curves for intelligent transportation systems[J].IEEE Transactions on Intelligent Transportation Systems,2008,9(4):666-677.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .