计算机科学 ›› 2017, Vol. 44 ›› Issue (9): 62-66.doi: 10.11896/j.issn.1002-137X.2017.09.012

• CRSSC-CWI-CGrC 2016 • 上一篇    下一篇

基于概念格的异构数据知识发现方法

牛娇娇,范敏,李金海,殷允强   

  1. 昆明理工大学理学院 昆明650500,昆明理工大学理学院 昆明650500,昆明理工大学理学院 昆明650500,昆明理工大学理学院 昆明650500
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61305057,61562050,61573173)资助

Knowledge Discovery Method for Heterogeneous Data Based on Concept Lattice

NIU Jiao-jiao, FAN Min, LI Jin-hai and YIN Yun-qiang   

  • Online:2018-11-13 Published:2018-11-13

摘要: 基于概念格的知识发现方法已被广泛关注,同时也吸引了众多学者的研究兴趣,特别是决策形式背景的知识发现,近年来取得了一些重要的研究成果。然而,现有的知识发现方法在面临大数据环境时,缺乏可行性与有效性。考虑到异构性是大数据的主要数据特征之一,针对异构数据,研究了基于概念格的知识发现方法。具体地,提出了异构形式背景及其概念格,通过异构形式背景定义了异构决策形式背景,进一步在异构决策形式背景上讨论了规则提取问题,并给出了挖掘非冗余决策规则的有效算法。

关键词: 概念格,异构形式背景,异构决策形式背景,知识发现

Abstract: Recently,much attention has been paid to concept-lattice-based knowledge discovery methods.In the meanwhile,this topic has attracted many research interests from the communities of formal concept analysis and rough set theory.Especially,in recent years,some substantial progresses have been made on studying formal decision contexts.However,the existing knowledge discovery methods are lack of feasibility and effectiveness when they are applied to big data.Considering that heterogeneity is one of the main characteristics of big data,this paper investigated concept-lattice-based knowledge discovery methods for heterogeneous data.Specifically,the notion of a heterogeneous formal context was proposed as well as its corresponding concept lattice,heterogeneous formal contexts were further employed to define heterogeneous formal decision contexts,and rule acquisition was discussed.Moreover,an algorithm of mining non-redundant decision rules from a heterogeneous formal decision context was explored.

Key words: Concept lattice,Heterogeneous formal context,Heterogeneous formal decision context,Knowledge discovery

[1] WILLE R.Restructuring lattice theory:an approach based on hierarchies of concepts[M]∥Rival I,ed.Ordered Sets.Dordrecht-Boston:Reidel,1982:445-470.
[2] HU K Y,LU Y C,SHI C Y.Advances in concept lattice and its application[J].Journal of Tsinghua University (Science and Technology),2000,40(9):77-81.(in Chinese) 胡可云,陆玉昌,石纯一.概念格及其应用进展[J].清华大学学报(自然科学版),2000,40(9):77-81.
[3] ZHANG W X,WEI L,QI J J.Attribute reduction theory and approach to concept lattice[J].Science China Series F-Information Sciences,2005,35(6):628-639.(in Chinese) 张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(F辑):信息科学,2005,35(6):628-639.
[4] LI J H,MEI C L,XU W H,et al.Concept learning via granular computing:A cognitive viewpoint[J].Information Sciences,2015,298:447-467.
[5] XU W H,LI W T.Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets [J].IEEE Transactions on Cybernetics,2016,46(2):366-379.
[6] ZHANG T,REN H L,HONG W X,et al.The visualizing calculation of formal concept that based on the attribute topologies [J].Acta Electronica Sinica,2014,42(5):925-932.(in Chinese) 张涛,任宏雷,洪文学,等.基于属性拓扑的可视化形式概念计算 [J].电子学报,2014,42(5):925-932.
[7] QI J J,WEI L,YAO Y Y.Three-way formal concept analysis [M]∥ Rough Sets and Knowledge Technology.2014:732-741.
[8] WEI L,QI J J,ZHANG W X.Attribute reduction theory of concept lattice based on decision formal contexts[J].Science China Series F-Information Sciences,2008,38(2):195-208.(in Chinese) 魏玲,祁建军,张文修.决策形式背景的概念格属性约简[J].中国科学(F辑):信息科学,2008,38(2):195-208.
[9] SHAO M W,LEUNG Y,WU W Z.Rule acquisition and complexity reduction in formal decision contexts[J].International Journal of Approximate Reasoning,2014,55(1):259-274.
[10] LI J H,MEI C L,LV Y J.A heuristic knowledge-reductionmethod for decision formal contexts[J].Computers and Mathematics with Applications,2011,61(4):1096-1106.
[11] LI J H,MEI C L,CHERUKURI A K,et al.On rule acquisition in decision formal contexts [J].International Journal of Machine Learning and Cybernetics,2013,4(6):721-731.
[12] WU W Z,LEUNG Y,MI J S.Granular computing and know-ledge reduction in formal contexts[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(10):1461-1474.
[13] 张文修,仇国芳.基于粗糙集的不确定性决策[M].北京:清华大学出版社,2005.
[14] QU K S,ZHAI Y H,LIANG J Y,et al.Study of decision implications based on formal concept analysis[J].International Journal of General Systems,2007,36(2):147-156.
[15] ZHI H L.Extended model of formal concept analysis oriented for heterogeneous data analysis[J].Acta Electronica Sinica,2013,41(12):2451-2455.(in Chinese) 智慧来.面向异构数据分析的形式概念分析的扩展模型[J].电子学报,2013,41(12):2451-2455.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .