计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 1-6.doi: 10.11896/j.issn.1002-137X.2017.10.001

• •    下一篇

旅游推荐系统研究综述

常亮,曹玉婷,孙文平,张伟涛,陈君同   

  1. 桂林电子科技大学广西可信软件重点实验室 桂林541004,桂林电子科技大学广西可信软件重点实验室 桂林541004,桂林电子科技大学广西可信软件重点实验室 桂林541004,桂林电子科技大学广西可信软件重点实验室 桂林541004,桂林电子科技大学广西可信软件重点实验室 桂林541004
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61363030,6,U1501252),广西自然科学基金(2015GXNSFAA139285,6GXNSFDA380006),广西信息科学实验中心(LD16058X)资助

Review on Tourism Recommendation System

CHANG Liang, CAO Yu-ting, SUN Wen-ping, ZHANG Wei-tao and CHEN Jun-tong   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为用户提供个性化推荐服务并提高推荐的准确度和用户满意度,是当前旅游推荐系统的主要研究任务。文中分析了旅游推荐系统与传统推荐系统的异同点,并从基于内容的推荐、基于协同过滤的推荐、基于知识的推荐、基于人口统计的推荐、混和型推荐以及基于位置感知的推荐共6个方面考查了旅游推荐的研究现状。在此基础上,给出了旅游推荐系统的一个总体框架。最后,总结分析了旅游推荐系统面临的6个重点和难点问题,并指出了下一步需要关注的研究方向。

关键词: 推荐技术,旅游推荐系统,协同过滤

Abstract: The main research task of current tourism recommendation system is to provide personal recommendation serves for users and improve the accuracy of recommendations and the satisfaction of users.In this paper,the similarities and differences between tourism recommender system and traditional recommender systemare were analyzed.And the research status of tourism recommender technologies was investigated from six aspects,i.e.,recommendation based on content,recommendation based on collaborative-filtering,recommendation based on knowledge,recommendation based on demographics,hybrid recommendation and recommendation based on location-awareness.As a summary of these research works,a general framework for tourism recommender system was proposed.Finally,six key and difficult problems on tourism recommender systems were presented,and some research topics which might bring great progress to tourism recommender systems were emphasized.

Key words: Recommender technology,Tourism recommender system,Collaboration-filtering

[1] BYKZKAN G,ERGN B.Intelligent system applications in electronic tourism[J].Expert Systems with Applications,2011,38(6):6586-6598.
[2] GAO H,TANG J,LIU H.Addressing the cold-start problem in location recommendation using geo-social correlations[J].Data Mining and Knowledge Discovery,2015,29(2):299-323.
[3] LI R,LI M Q,GUO W Q.Research on Collaborative Filtering Algorithm with Improved Similarity[J].Computer Science,2016,3(12):206-208,0.(in Chinese) 李容,李明奇,郭文强.基于改进相似度的协同过滤算法研究[J].计算机科学,2016,43(12):206-208,240.
[4] RICCI F,ROKACH L,SHAPIRA B.Introduction to recommender systems handbook[M]∥Recommender Systems Handbook.New York:Springer,2011:1-35.
[5] ASABERE N Y.Towards a viewpoint of context-aware recommender systems (CARS) and services[J].International Journal of Computer Science and Telecommunications,2013,4(1):10-29.
[6] CAI H N,CHEN C,WEN J H,et al.Personalized LocationRecommendation Algorithm Research Based on User Check-ins and Geographical Properties[J].Computer Science,2016,3(12):163-167,8.(in Chinese) 蔡海尼,陈程,文俊浩,等.基于用户签到和地理属性的个性化位置推荐算法研究[J].计算机科学,2016,3(12):163-167,178.
[7] HASUIKE T,KATAGIRI H,TSUDA H.A New Recommen-dation System for Personal Sightseeing Route from Subjective and Objective Evaluation of Tourism Information[J].Information Engineering Express,2016,2(3):1-10.
[8] BOUROS P,LATHIA N,RENZ M,et al.LocalRec'15:Workshop on Location-Aware Recommendations[C]∥Proceedings of the 9th ACM Conference on Recommender Systems.ACM,2015:351-352.
[9] GARCIA I,SEBASTIA L,ONAINDIA E.On the design of individual and group recommender systems for tourism[J].Expert Systems with Applications,2011,38(6):7683-7692.
[10] LU E H C,FANG S H,TSENG V S.Integrating tourist packages and tourist attractions for personalized trip planning based on travel constraints[J].GeoInformatica,2016,20(4):741-763.
[11] FU Y P,QIU Y H.Method of Personalized Collaboration Filter Recommendation Based on Bayesian Network[J].Computer Science,2016,3(9):266-268.(in Chinese) 付永平,邱玉辉.一种基于贝叶斯网络的个性化协同过滤推荐方法研究[J].计算机科学,2016,3(9):266-268.
[12] MORENO A,VALLS A,SERN D,et al.SigTur/E-Destination:ontology-based personalized recommendation of tourism and leisure activities[J].Engineering Applications of Artificial Intelligence,2013,6(1):633-651.
[13] FENZA G,FISCHETTI E,FUMO D,et al.A hybrid contextaware system for tourist guidance based on collaborative filtering[C]∥IEEE International Conference on Fuzzy Systems.2011:131-138.
[14] ALPTEKIN G I,BYKZKAN G.An integrated case-based reasoning and MCDM system for Web based tourism destination planning[J].Expert Systems with Applications,2011,8(3):2125-2132.
[15] HSU F M,LIN Y T,HO T K.Design and implementation of an intelligent recommendation system for tourist attractions:The integration of EBM model,Bayesian network and Google Maps[J].Expert Systems with Applications,2012,39(3):3257-3264.
[16] LIU Q.A Study of Designing and Applying RecommendersBased on User Interests Modeling[D].Hefei:University ofScience and Technology of China,2013.(in Chinese) 刘淇.基于用户兴趣建模的推荐方法及应用研究[D].合肥:中国科学技术大学,2013.
[17] NILASHI M,IBRAHIM O B,ITHNIN N,et al.A Multi-Criteria Collaborative Filtering Recommender System for the Tourism Domain Using Expectation Maximization (EM) and PCA-ANFIS[J].Electronic Commerce Research and Applications,2015,4(6):542-562.
[18] WANG Y,CHAN S C F,NGAI G.Applicability of demographic recommender system to touristions:a case study on trip advisor[C]∥Proceedings of The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 03.IEEE Computer Society,2012:97-101.
[19] DODWAD P R,LOBO L.A context-aware recommender system using ontology based approach for travel applications[J].International Journal of Advanced Engineering and Nano Technology,2014,1(10):8-12.
[20] NIARAKI A S,KIM K.Ontology based personalized route planning system using a multi-criteria decision making approach[J].Expert Systems with Applications,2009,36(2):2250-2259.
[21] LEE C S,CHANG Y C,WANG M H.Ontological recommendation multi-agent for Tainan City travel[J].Expert Systems with Applications,2009,6(3):6740-6753.
[22] DODWAD P R,LOBO L.Personalized Context-aware Recom-mendations and Semantic Search in Smart Tourist Guide System[J].International Journal of Application or Innovation in Engineering & Management,2014,3(1):312-314.
[23] HASSAN M,LU H,LU J.A semantic enhanced hybrid recommendation approach:A case study of e-Government tourism service recommendation system[J].Decision Support Systems,2015,72:97-109.
[24] BORRS J,MORENO A,VALLS A.Intelligent tourism recommender systems:A survey[J].Expert Systems with Applications,2014,41(16):7370-7389.
[25] RAVI L,VAIRAVASUNDARAM S.A Collaborative Location Based Travel Recommendation System through Enhanced Ra-ting Prediction for the Group of Users[J].Computational Intelligence and Neuroscience,2016,2016(2):1291358.
[26] HUSAIN W,DIH L Y.A framework of a personalized location-based traveler recommendation system in mobile application[J].International Journal of Multimedia and Ubiquitous Enginee-ring,2012,7(3):11-18.
[27] CAO L,LUO J,GALLAGHER A C,et al.A worldwide tourism recommendation system based on geotagged Web photos[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.2010:2274-2277.
[28] LI D,LV Q,XIE X,et al.Interest-based real-time content re-commendation in online social communities[J].Knowledge-Based Systems,2012,28(2):1-12.
[29] BATET M,MORENO A,SNCHEZ D,et al.Turist@:Agent-based personalised recommendation of touristic activities[J].Expert Systems with Applications,2012,9(8):7319-7329.
[30] DONG Y.User Modeling in Large Social Networks [C]∥Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.ACM,2016:713-713.
[31] TUZHILIN A,ADOMAVICIUS G.System,process and soft-ware arrangement for providing multidimensional recommendations /suggestions:U.S.Patent 8,4,000[P].2015-3-17.
[32] XIONG H,LIU Z.A situation information integrated persona-lized travel package recommendation approach based on TD-LDA model[C]∥International Conference on Behavioral,Economic and Socio-cultural Computing (BESC).IEEE,2015:32-37.
[33] CHRISTENSEN I,SCHIAFFINO S,A RMENTANO M.Social group recommendation in the tourism domain[J].Journal of Intelligent Information Systems,2016,47(2):209-231.
[34] WEN J H,HE B,HU Y P.Hybrid Recommendation Algorithm Based on User’s Trust in Social Networks[J].Computer Science,2016,3(1):255-258.(in Chinese) 文俊浩,何波,胡远鹏.基于社交网络用户信任度的混合推荐算法研究[J].计算机科学,2016,43(1):255-258.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .