计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 14-18, 44.doi: 10.11896/j.issn.1002-137X.2017.10.003

• • 上一篇    下一篇

基于ARIMA模型的虚拟资源动态调度方法

杨冬菊,邓崇彬   

  1. 大规模流数据集成与分析技术北京市重点实验室 北京100144 北方工业大学云计算研究中心 北京100144,大规模流数据集成与分析技术北京市重点实验室 北京100144 北方工业大学云计算研究中心 北京100144
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受北京市自然科学基金重点项目:面向大规模流数据处理的数据空间理论和关键技术(4131001)资助

Dynamic Scheduling Method of Virtual Resources Based on ARIMA Model

YANG Dong-ju and DENG Chong-bin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 将应用部署到云端已经成为业界越来越普遍的做法,高并发、大流量已经成为多数云应用的一大特征。如何应对不断增长的高并发和用户流量的激增、合理利用资源、保障应用的稳定运行是云资源管理需要解决的重要问题。针对基于监控数据进行资源调整的方式容易引发资源调整滞后的问题,提出了一种基于ARIMA预测模型进行资源调整的虚拟资源动态调度方法。该方法能够根据预测的请求量,结合当前资源的负载能力来计算所需的资源规模,从而进行虚拟机资源的配置或释放。实验结果表明,所采用的预测模型能够较好地拟合实验的场景,通过使用基于预测模型的资源调度算法能够及时、有效地保证云服务质量。

关键词: 云应用,流量激增,服务质量,预测模型,资源动态调度

Abstract: Deploying applications to the cloud has become an increasingly common practice in the industry,high concurrency and high traffic have become major features of most cloud applications.How to deal with the rising of the high concurrency and the surge of user traffic,to use resources reasonably,and to ensure the stable operation of the application,are important issues to solve for the cloud resource management.Considering the adjustment of resources based on monitoring data is easy to trigger the delay of resource scheduling,a dynamic scheduling method for resource adjustment based on ARIMA prediction model was proposed in this paper.The method can calculate the required resource size according to the demand of the forecast and the load capacity of the current resources scale,thus configurating or releasing the virtual machine resources.The experimental results show that the prediction model can fit the scene well.By using the predictive model,the resource scheduling algorithm can effectively guarantee the quality of cloud services in a timely and effective manner.

Key words: Cloud application,Surge in traffic,Quality of service,Prediction model,Dynamic resource scheduling

[1] SOMASUNDARAM T S,GOVINDARAJAN K.CLOUDRB:A framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud[J].Future Generation Computer Systems,2014,34(5):47-65.
[2] ZHAO Y,LI Y,RAICU I,et al.Enabling scalable scientificworkflow management in the Cloud[J].Future Generation Computer Systems,2015,46(c):3-16.
[3] RAMNARAYAN J,MOZAFARI B,WALE S,et al.Snappy-Data:A Hybrid Transactional Analytical Store Built on Spark[C]∥International Conference on Management of Data.ACM,2016:2153-2156.
[4] YUAN H,LI C,DU M.Optimal Virtual Machine ResourcesScheduling Based on Improved Particle Swarm Optimization in Cloud Computing[J].Journal of Software,2014,9(3):705.
[5] HUANG Q,SHUANG K,XU P,et al.Prediction-based Dyna-mic Resource Scheduling for Virtualized Cloud Systems[J].Journal of Networks,2014,9(2):375-383.
[6] ACETO G,BOTTA A,DONATO W D,et al.Cloud monitoring:A survey[J].Computer Networks,2013,57(9):2093-2115.
[7] CS S,S B M S.A Comparative Analysis of Scheduling Policies in Cloud Computing Environment[J].International Journal of Computer Applications,2013,67(20):16-24.
[8] ZHANG Q,CHEN H,SHEN Y,et al.Optimization of virtualresource management for cloud applications to cope with traffic burst[J].Future Generation Computer Systems,2016,58:42-55.
[9] ZHENG Q,LI R,LI X,et al.Virtual machine consolidatedplacement based on multi-objective biogeography-based optimization[J].Future Generation Computer Systems,2016,54(C):95-122.
[10] LIU Z,ZHOU H,FU S,et al.Algorithm Optimization ofResources Scheduling Based on Cloud Computing[J].Journal of Multimedia,2014,9(7):1451-1456.
[11] SHAO Y.Virtual Resource Allocation based on Improved ParticleSwarm Optimization in Cloud Computing Environment[J].International Journal of Grid & Distributed Computing,2015,8(1):228-233.
[12] HASSAN M M,ALAMRI A.Virtual Machine Resource Allocation for Multimedia Cloud:A Nash Bargaining Approach[J].Procedia Computer Science,2014,34:571-576.
[13] SINGH S,CHANA I.Q-aware:Quality of service based cloud resource provisioning[J].Computers & Electrical Engineering,2015,47:138-160.
[14] SALAH K,ELBADAWI K,BOUTABA R.An Analytical Modelfor Estimating Cloud Resources of Elastic Services[J].Journal of Network & Systems Management,2016,24(2):285-308.
[15] SHYAM G K,MANVI S S.Virtual resource prediction in cloud environment:A Bayesian approach[J].Journal of Network & Computer Applications,2016,65(C):144-154.
[16] HASSANI H,SILVA E S.Forecasting with Big Data:A Review[J].Annals of Data Science,2015,2(1):5-19.
[17] ALTINTAS N,TRICK M.A data mining approach to forecast behavior[J].Annals of Operations Research,2014,216(1):3-22.
[18] HANSUN S.A new approach of moving average method in time series analysis[C]∥New Media Studies.IEEE,2013:1-4.
[19] https://en.wikipedia.org/wiki/Moving_average.
[20] https://en.wikipedia.org/wiki/Polynomial_regression.
[21] LI J,SHEN L,TONG Y.Prediction of Network Flow Based on Wavelet Analysis and ARIMA Model[C]∥International Conference on Wireless Networks and Information Systems.IEEE Computer Society,2009:217-220.
[22] https://en.wikipedia.org/wiki/Autoregressive_integrated_mo-ving_average.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .