计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 99-102, 133.doi: 10.11896/j.issn.1002-137X.2017.10.019

• 网络与通信 • 上一篇    下一篇



  1. 中国人民解放军理工大学通信工程学院 南京210007,中国人民解放军理工大学通信工程学院 南京210007,中国人民解放军理工大学通信工程学院 南京210007,中国人民解放军理工大学通信工程学院 南京210007
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:

DOA Estimating Algorithm Based on Grid-less Compressive Sensing

ZHANG Xing-hang, GUO Yan, LI Ning and SUN Bao-ming   

  • Online:2018-12-01 Published:2018-12-01

摘要: 应用传统的压缩感知理论对天线阵列信号的波达方向(Direction-of-arrival,DOA) 进行估计,存在基的失配问题。基于交替方向乘子法 (Alternative Direction Method of Multiplier,ADMM) 的无网格压缩感知(Grid-less Compressive Sensing) 技术能够解决该问题,但仍存在收敛速度慢的缺陷。针对该缺陷, 提出带自适应惩罚项的ADMM (ADMM with adaptive penalty,AP-ADMM)算法,即根据输入信号的噪声功率,自适应地选择惩罚项的初始值;同时在算法迭代求解的过程中,自适应地对目标函数的惩罚项进行调整。与传统算法相比,在保证收敛精度和DOA的恢复成功概率的条件下,带自适应惩罚项的ADMM算法收敛速率明显加快。仿真结果验证了新算法的有效性。

关键词: 波达方向估计,无网格压缩感知,带自适应惩罚项的ADMM算法

Abstract: The basis mismatch is existing in the DOA estimation problem by traditional compressive sensing theory.Applying the grid-less compressive sensing technology based on the ADMM algorithm is a wonderful solution,but the convergence rate of the traditional ADMM algorithm was low.To solve this problem,the AP-ADMM algorithm was proposed in this paper.According to the power of the input signals,the AP-ADMM algorithm is able to choose the original numerical value of the penalty adaptively.In addition,the proposed algorithm converges with the ite-rating adaptive penalty.The convergence rate of the proposed algorithm is much higher than the traditional ADMM algorithm.Meanwhile,the accuracy and the probability of successful restoration of the proposed algorithm are approximate with the the traditional ADMM algorithm.The simulation results demonstrate the efficiency of the proposed algorithm.

Key words: DOA,Grid-less compressive sensing,AP-ADMM algorithm

[1] SCHMIDT R.Multiple emitter location and signal parameter estimation [J].IEEE Transactions on Antennas and Propagation,1986,34(3):276-280.
[2] ROY R,KAILATH T.ESPRIT-estimation of signal parameters via rotational invariance techniques [J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(7):984-995.
[3] HERMAN M A,STROHMER T.High-resolution radar via com-pressed sensing [J].IEEE Transactions on Signal Processing,2009,57(6):2275-2284.
[4] DUARTE M F,BARANIUK R G.Spectral compressive sensing[J].Applied & Computational Harmonic Analysis,2013,35(1):111-129.
[5] YANG Z,XIE L H.On gridless sparse methods for line spectral estimation from complete and incomplete data [J].IEEE Tran-sactions on Signal Processing,2015,63(12):3139-3153.
[6] TANG G G,BHASKAR B N,SHAH P,et al.Compressed sen-sing off the grid [J].IEEE Transactions on Information Theory,2013,59(11):7465-7490.
[7] CHI Y J,SCHARF L L,PEZESHKI A,et al.Sensitivity to basis mismatch in compressed sensing [J].IEEE Transactions on Signal Processing,2011,59(5):2182-2195.
[8] YANG X M,ZHENG Z,HU B.Off-grid DOA estimation of incoherently distributed non-circular sources via generalized approximate message passing [J].IEEE Electronics Letters,2016,52(4):262-264.
[9] ZHAO Y H,ZHANG L R,GU Y B.Array covariance matrix-based sparse bayesian learning for off-grid direction-of-arrival estimation [J].IEEE Electronics Letters,2006,52(5):401-402.
[10] WU X H,ZHU W P,YAN J.Direction of arrival estimation for off-grid signals based on sparse bayesian learning [J].IEEE Sensors Journal,2016,16(7):2004-2016.
[11] CHEN X S,ZHANG X W,YANG J B,et al.How to solve basis-mismatch:From atomic norm to grid-less compressive sensing [J].ACTA Automatica Sinica,2016,42(3):335-346.(in Chinese) 陈栩杉,张雄伟,杨吉斌,等.如何解决基失配问题:从原子范数到无网格压缩感知[J].自动化学报,2016,42(3):335-346.
[12] CHANDRASEKARAN V,RECHT B,PARRILO P A,et al.The convex geometry of linear inverse problems [J].Foundations of Computational Mathematics,2012,12(6):805-849.
[13] CANDS E,ROMBERGH J,TAO T.Stable signal recovery from incomplete and inaccurate measurements [J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
[14] RECHT B,FAZEL M,PARRILO P.Guaranteed minimum rank solutions of matrix equations via nuclear norm minimization [J].SIAM Review,2010,52(3):471-501.
[15] BOYD S,PARIKH N,CHU B P E,et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends in Machine Lear-ning,2011,3:1-122.
[16] PHAM D S,VENKATESH S.Efficient algorithms for robust recovery of images from compressed data [J].IEEE Transactions on Image Processing,2013,22(12):4724-4737.
[17] SHEN C,CHANG T H,WANG K Y,et al.Distributed robust multi-cell coordinated beamforming with imperfect CSI:An ADMM approach [J].IEEE Transactions on Signal Processing,2012,60(6):2988-3003.
[18] LEINONEN M,CODREANU M,JUNTTI M.Distributed joint resource and routing optimization in wireless sensor networks via alternating direction method of multipliers [J].IEEE Tran-sactions on Wireless Communications,2013,12(11):5454-5467.
[19] YANG L,ZHOU J X,XIAO H T.Super-resolution radar imaging using fast continuous compressed sensing [J].IEEE Electronics Letters,2015,51(24):2043-2045.
[20] YANG L,ZHOU J X,XIAO H T.Compressive high range resolution radar imaging based on continuous dictionary [C]// Proceedings of the IET International Radar Conference.Hangzhou,China,2015:1-5.
[21] YANG Z,XIE L H.Enhancing sparsity and resolution via reweighted atomic norm minimization [J].IEEE Transactions on Signal Processing,2016,64(4):995-1006.
[22] WANG S L,LIAO L Z.Decomposition method with a variable parameter for a class of monotone variational inequality problems[J].Journal of Optimization Theory and Applications,2001,109(2):415-429.
[23] RUSZCZY′NSKI A.An augmented lagrangian decompositionmethod for block diagonal linear programming problems [J].Operations Research Letters,1989,8(5):287-294.
[24] BHASKAR B N,TANG G,RECHT B.Atomic norm denoising with applications to line spectral estimation [J/OL].https://people.eecs.berkeley.edu/~brecht/papers/12.Bha.EtAl.Denoising.pdf.
[25] CADZOW J.Signal enhancement:A composite property mapping algorithm[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1988,36(1):49-62.

No related articles found!
Full text



[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .