计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 182-186.doi: 10.11896/j.issn.1002-137X.2017.10.034

• 人工智能 • 上一篇    下一篇

基于码本聚类和因子分解机的多指标推荐算法

丁永刚,李石君,余伟,王俊   

  1. 武汉大学计算机学院 武汉430072;湖北大学教育学院 武汉430062,武汉大学计算机学院 武汉430072,武汉大学计算机学院 武汉430072,武汉大学计算机学院 武汉430072
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金项目(61502350),湖北省自然科学基金项目(2014CFB289)资助

Multi-criteria Recommendation Algorithm Based on Codebook-clustering and Factorization Machines

DING Yong-gang, LI Shi-jun, YU Wei and WANG Jun   

  • Online:2018-12-01 Published:2018-12-01

摘要: 传统的协同过滤推荐算法普遍存在数据稀疏问题,且仅利用单一综合评分来计算用户相似度,无法找到在多个指标上偏好相似的用户,因而影响推荐的准确度。多指标评分推荐算法力图寻找在多个指标上偏好相似的用户,但是其评价成本高,导致数据稀疏性问题更加严重。为了找到与目标用户在多个指标上偏好相似的用户,提出基于码本聚类的思想来获取用户在各指标上的评分风格信息,然后基于评分风格信息将用户和项目在各指标上进行双向聚类,最后利用因子分解机模型(Factorization Machines,FMs)基于同一簇内的用户、项目、多指标评分信息、评分风格信息进行推荐。实验结果表明,与传统的协同过滤算法和其他多指标推荐方法相比,基于多指标评分信息的因子分解机推荐算法能够在一定程度上缓解数据稀疏问题,提高推荐的准确度。

关键词: 用户偏好,多指标评分,码本聚类,因子分解机

Abstract: The sparsity of user-item ratings is a common problem and the users who share similar preferences on multi-criteria cannot be found by only making use of a single overall rating to calculate the similarity of users in traditional collaborative filtering algorithm,which would affect the accuracy of recommendation.Multi-criteria recommendation algorithm tries to find users who share similar preferences on multi-criteria,but the problem of data sparsity become even worse owing to the high cost of rating.Aim at these problems,we proposed an algorithm which first obtains the information of rating style of users based on the idea of codebook-clustering,and then conducts co-clustering for users and items on each criteria.Finally,this algorithm makes recommendations by factorization machines(FMs) based on users,items,multi-criteria ratings and rating style.The experimental result shows that multi-criteria recommendation algorithm based on codebook-clustering and FMs is able to solve the problem of data sparsity to some extent,thus improving the accuracy of recommendation.

Key words: User preference,Multi-criteria ratings,Codebook-clustering,Factorization machines(FMs)

[1] LINDEN B G,SMITH B,YORK J.Amazon.com Recommendations Iem-to-item collaborative filtering[J].IEEE Internet Computing,2015,4(1):76-80.
[2] ZHANG W J.Research on Application of Collaborative Filtering in Electronic Commerce Recommender Systems[M]∥ Advances in Computer Science,Envioronment,Ecoinformatics,and Education.Springer Berlin Heidelberg,2011:539-544.
[3] CHOI K,YOO D,KIM G,et al.A hybrid online-product recommendation system:Combining implicit rating-based collaborative filtering and sequential pattern analysis[J].Electronic Commerce Research & Applications,2012,11(4):309-317.
[4] FUCHS M,ZANKER M.Multi-criteria Ratings for Recommender Systems:An Empirical Analysis in the Tourism Domain[J].Lecture Notes in Business Information Processing,2012,123(2):100-111.
[5] ADOMAVICIUS G,TUZHILIN A.Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge & Data Engineering,2005,17(6):734-749.
[6] RENDLE S.Factorization machines[C]∥Proceedings of the 10thIEEE International Conference on Data Mining.2010:995-1000.
[7] RENDLE S,GANTNER Z,FREUDENTHALER C,et al.Fast context-aware recommendations with factorization machines[C]∥Proceeding of the International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2011).Beijing,China,July,2011:635-644.
[8] ADOMAVICIUS G,KWON Y O.New Recommendation Techniques for Multicriteria Rating Systems[J].Intelligent Systems IEEE,2007,22(3):48-55.
[9] MANOUSELIS N,COSTOPOULOU C.Experimental Analysis of Design Choices in Multi-Attribute Utility Collaborative Filtering[J].International Journal of Pattern Recognition and Artificial Intelligence,2007,21(2):311-331.
[10] TANG T Y,MCCALLA G.The Pedagogical Value of Papers:a Collaborative-Filtering based Paper Recommender.http://journals.tdl.org/jodi/article/view/446.
[11] HWANG C S.Genetic Algorithms for Feature Weighting inMulti-criteria Recommender Systems[J].Journal of Convergence Information Technology,2010,5(5):126-136.
[12] JANNACH D,KARAKAYA Z,Gedikli F.Accuracy improve-ments for multi-criteria recommender systems[C]∥ACM Conference on Electronic Commerce.ACM,2012:674-689.
[13] LIU L W,MEHANDJIEV N,XU D L.Multi-criteria servicerecommendation based on user criteria preferences[C]∥ACM Conference on Recommender System.ACM,2011:77-84.
[14] SAHOO N,KRISHNAN R,DUNCAN G,et al.CollaborativeFiltering with Multicomponent Rating for Recommender Systems[C]∥Proceedings of the 16th Workshop on Information Technologies and Systems (WITS’06).2006.
[15] ZHANG Y,ZHUANG Y,WU J,et al.Applying probabilistic latent semantic analysis to multi-criteria recommender system.[J].Ai Communications,2009,22(22):97-107.
[16] SAHOO N,KRISHNAN R,DUNCAN G,et al.Research Note--The Halo Effect in Multicomponent Ratings and Its Implications for Recommender Systems:The Case of Yahoo! Movies[J].Information Systems Research,2012,23(1):231-246.
[17] NNADI N.Applying relevant set correlation clustering to multi-criteria recommender systems[C]∥Proceedings of the 2009 ACM Conference on Recommender Systems.2009:401-404.
[18] LI Q,WANG C,GENG G.Improving personalized services in mobile commerce by a novel multicriteria rating approach[C]∥International Conference on World Wide Web(WWW 2008).Beijing,China,2008:1235-1236.
[19] TAN T F,NETESSINE S.Is Tom Cruise Threatened? Using Netflix Prize Data to Examine the Long Tail of Electronic Commerce[D].Philadelphia Wharton Business School,2009.
[20] LONI B,SAID A,LARSON M,et al.Free lunch enhancement for collaborative filtering with factorization machines[C]∥ Proceedings of the 8th ACM Conference on Recommender Systems.ACM,2014:281-284.
[21] RENDLEendle S.Factorization Machines with libFM[J].ACM Transactions on Intelligent Systems & Technology,2012,3(3):219-224.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .