计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 234-236, 258.doi: 10.11896/j.issn.1002-137X.2017.10.042

• 人工智能 • 上一篇    下一篇

元搜索中成员搜索引擎的选择问题研究

刘登洪,徐贤   

  1. 华东理工大学计算机科学与工程系 上海200237,华东理工大学计算机科学与工程系 上海200237
  • 出版日期:2018-12-01 发布日期:2018-12-01

Research on Member Search Engine Selection in Meta Search

LIU Deng-hong and XU Xian   

  • Online:2018-12-01 Published:2018-12-01

摘要: 随着网络的普及,网上检索成为了人们获取信息的主要方式。目前的搜索引擎相对独立,覆盖范围比较有限。相比之下,元搜索能够更好地满足用户的检索需求。当用户在元搜索提供的统一界面中输入一个查询时,元搜索会将处理后的用户请求发送给相关的成员搜索引擎。但是一个重要的问题是如何识别出潜在的搜索引擎以便更好地处理用户的请求。鉴于此提出了一种基于遗传算法的选择机制,该方法将各个成员搜索引擎的权重考虑在内。实验结果表明,该方法确实能够提高引擎选择中的效率和精度。

关键词: 元搜索,查询,引擎选择

Abstract: With the popularity of network,searching online becomes the main way to get information.Compared to independent search engine usually with limited coverage,meta search engine can meet the needs of information retrieval in a better way.When a query is input in the unified interface provided by meta search,it first processes the query and then sends it to appropriate member search engines.An important problem is how to find the underlying search engines which can optimally reply to the user query.In this paper,we proposed a mechanism based on genetic algorithm,which also takes the weight of each member search engine into account.The experimental results show that our method can indeed improve efficiency and accuracy on engine selection.

Key words: Meta search,Query,Engine selection

[1] MENG W Y,YU C,LIU K L.Building efficient and effectivemeta-search engines[J].ACM Computing Surveys (CSUR),2002,34(1):48-89.
[2] XUE Y,SHEN X P,CHEN J B.Research on an Algorithm of Metasearch Engine Based on Personalized Demand of Users[C]∥2010 International Forum on Information Technology and Appli- cations(IFITA).IEEE,Kunming,China,2010:240-243.
[3] SUN Y C,LI Q S.The research situation and prospect analysis of meta-search engines[C]∥2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE).IEEE,Bali,Indonesia,2012:224-229.
[4] CALLAN J P,LU Z H,CROFT W B.Searching distributed collections with inference networks[C]∥Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,Massachusetts,USA,1995:21-28.
[5] SI L,CALLAN J.Relevant document distribution estimationmethod for resource selection[C]∥Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,Toronto,Canada,2003:298-305.
[6] CETINTAS S,SI L,HAO Y.Learning from past queries for resource selection[C]∥Proceedings of the 18th ACM Conference on Information and Knowledge Management.ACM,Hong Kong,China,2009:1867-1870.
[7] RAVI S,GANESAN N,RAJU V.Search Engines Using Evolutionary Algorithms[J].International Journal of Communication Network Security,2012,4(1):39-44.
[8] KUMAR R,SINGH S K,KUMAR V.A heuristic approach for search engine selection in meta- search engine[C]∥2015 International Conference on Computing,Communication & Automation(ICCCA).IEEE,Uttar Pradesh,India,2015:865-869.
[9] SHEO D,KULDEEP S R.Search Engine Selection Approach in Metasearch Using Past Queries[J].Oriental Journal of Compu-ter Science & Technology,2014,3(23):177-183.
[10] SI L,CALLAN J.A semisupervised learning method to merge search engine results[J].ACM Transactions on Information Systems (TOIS),2003,21(4):457-491.
[11] KUMAR R,GIRI A K.Learning based approach for search engine selection in meta-search engine[J].International Journal of Engineering and Management Research,2013,10(3):82-88.
[12] XU Z Y,WANG X X.A predictive modified round robin scheduling algorithm for web server clusters[C]∥2015 34th Chinese Control Conference(CCC).IEEE,Hangzhou,China,2015:5804-5808.
[13] DEB K,GOYAL M.A combined genetic adaptive search (GeneAS) for engineering design[J].Computer Science and Informa-tics,1996,26(16):30-45.
[14] GORDON M.Probabilistic and genetic algorithms in document retrieval[J].Communications of the ACM,1988,31(10):1208-1218.
[15] GOEL P,JAIN T,BHATIA M P S.Learning from training query in Meta search using Artificial neural network[C]∥2015 Annual IEEE India Conference (INDICON).IEEE,Delhi,India,2015:1-6.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .