计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 245-248, 275.doi: 10.11896/j.issn.1002-137X.2017.10.044

• 人工智能 • 上一篇    下一篇

业务流程模型抽象中最优子流程数的确定

孙善武,王楠   

  1. 吉林财经大学管理科学与信息工程学院 长春130117 吉林财经大学物流产业经济与智能物流吉林省重点实验室 长春130117 吉林财经大学吉林省互联网金融重点实验室 长春130117,吉林财经大学管理科学与信息工程学院 长春130117 吉林财经大学物流产业经济与智能物流吉林省重点实验室 长春130117 吉林财经大学吉林省互联网金融重点实验室 长春130117
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61402193,61702213),吉林省教育厅“十三五”科学技术研究项目(2016105),吉林省教育科学“十二五/十三五”规划课题(GH150285,GH16249)资助

Determining Optimal Number of Subprocesses in Business Process Model Abstraction

SUN Shanwu and WANG Nan   

  • Online:2018-12-01 Published:2018-12-01

摘要: 根据业务流程模型的特征,基于笔者前期工作中给出的两个不同约束条件下的受限k-means行为聚类算法,提出确定最优子流程数的方法。基于对流程结构的假设,同时结合行为语义的经验阈值限定,给出了确定子流程数恰当上限值的方法,以达到减少循环次数的目的。根据k值的变化,分别基于子流程结构紧密性特征和流程结构树,在循环过程中设计增量式方法 ,对簇中心进行简便的递增;设计合理的有效性指标,对抽象结果模型进行评估,进而生成最佳子流程数;利用真实的流程模型库对设计的方法进行实验验证,得到的最优子流程数与人工设计的结果非常接近。

关键词: 业务流程模型抽象,最优子流程数,行为文档

Abstract: ion SUN Shan-wu WANG Nan (College of Management Science and Information Engineering,Jilin University of Finance and Economics,Changchun 130117,China) (Laboratory of Logistics Industry Economy and Intelligent Logistics,Jilin University of Finance and Economics,Changchun 130117,China) (Jilin Province Key Laboratory of Internet Finance,Jilin University of Finance and Economics,Changchun 130117,China) Abstract According to the characteristics of the business process model,this paper proposed a method to determine the optimal number of subprocesses based on the k-means activity clustering algorithm with two different constraints given in the previous work.Combining the assumption for the process structure with the threshold restriction of activity semantics,the method of determining the appropriate upper bound of the number of subprocesses is given in order to reduce the number of iterations.According to the change of k value,based on the characteristics of structural compactness of the subprocesses and the refined process structure tree,an incremental approach is designed to simplify the incremental of the cluster centers.A reasonable index is designed to evaluate the abstract result model,and then the optimal number of subprocesses is generated.The proposed method is applied to a process model repository in use,and the number of the optimal subprocesses is very close to the result given by the modelers involved.

Key words: Business process model abstraction,Optimal number of subprocesses,Behavioral profiles

[1] SMIRNOV S,REIJERS H A,WESKE M.A Semantic Approach for Business Process Model Abstraction[C]∥Proceedings of the CAiSE 2011.Springer,2011:497-511.
[2] REIJERS H A,MENDLING J,DIJKMAN R M.On the Usefulness of Subprocesses in Business Process Models[J].Information Systems(IS),2012,7(5):443-459.
[3] ZHOU S B.Research and application of optimal cluster number determination method in clustering analysis[D].Wuxi:JiangNan University,2011.(in Chinese) 周世兵.聚类分析中的最佳聚类数确定方法研究及应用[D].无锡:江南大学,2011.
[4] CHEN L F.Research on Clustering Methods for High Dimensional Data and Their Applications[D].Xiamen:Xiamen University,2008.(in Chinese) 陈黎飞.高维数据的聚类方法研究与应用[D].厦门:厦门大学,2008.
[5] WANG N,SUN S W.Constraint-based Activity Clustering in Business Process Model Abstraction[J] Computer Science,2017,4(1):259-263,4.(in Chinese) 王楠,孙善武.业务流程模型抽象中基于约束的行为聚类方法研究[J].计算机科学,2017,44(1):259-263,294.
[6] WANG N,SUN S W,OUYANG D T.Business Process Mode-ling Abstraction Based on Semi-Supervised Clustering Analysis[C]∥Business & Information Systems Engineering.2016.
[7] SMIRNOV S.Business Process Model Abstraction,.Germany:University of Potsdam.http://opus.kobv.de/ubp/volltexte/2012/6025/pdf/smirnov_diss.pdf.
[8] POLYVYANYY A,VANHATOLO J,VOLZER H.Simplified Computation and Generalization of the Refined Process Structure Tree[C]∥Proceedings of the WS-FM 2010.Springer,2011:25-41.
[9] FREY B J,DUECK D.Response to Comment on Clustering by Passing Messages Between Data Points[J].Science,2008,319(5864):726.
[10] YANG S L,LI Y S,HU X X,et al.Optimization Study on kValue of K-means Algorithm K-means[J].System Engineering Theory and Practice System EngTheorPrac,2006,6(2):97-101.(in Chinese) 杨善林,李永森,胡笑旋,等.K-means算法中的k值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101.
[11] FREY B J,DUECK D.Clustering by passing messages between data points[J].Science,2007,315(5814):972-976.
[12] SUN S W,WANG N,OUYANG D T.Business Process Model Abstraction Based on Cluster Analysis [J].Computer Science,2016,5(5):193-197.(in Chinese) 孙善武,王楠,欧阳丹彤.基于聚类分析的业务流程模型抽象[J].计算机科学,2016,5(5):193-197.
[13] SMIRNOV S,WEIDLICH M,MENDLING J.Business Process Model Abstraction Based on Behavioral Profiles[M]∥Service-Oriented Computing.Springer Berlin Heidelberg,2010:1-16.
[14] SMIRNOV S,WEIDLICH M,MENDLING J.Business Process Model Abstraction Based on Synthesis from Well-Structured Behavioral Profiles[J].International Journal of Cooperative Information Systems,2012,21(1):55-83.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .