计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 249-253.doi: 10.11896/j.issn.1002-137X.2017.10.045

• 人工智能 • 上一篇    下一篇

基于卷积神经网络的中文医疗弱监督关系抽取

刘凯,符海东,邹玉薇,顾进广   

  1. 武汉科技大学计算机科学与技术学院 武汉430065智能信息处理与实时工业系统湖北省重点实验室 武汉430065,武汉科技大学计算机科学与技术学院 武汉430065智能信息处理与实时工业系统湖北省重点实验室 武汉430065,武汉科技大学计算机科学与技术学院 武汉430065智能信息处理与实时工业系统湖北省重点实验室 武汉430065,武汉科技大学计算机科学与技术学院 武汉430065智能信息处理与实时工业系统湖北省重点实验室 武汉430065
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受湖北省自然科学基金(2013CFB334)资助

Chinese Medical Weak Supervised Relation Extraction Based on Convolution Neural Network

LIU Kai, FU Hai-dong, ZOU Yu-wei and GU Jin-guang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 随着医疗领域受到越来越多的关注,自然语言处理的理论和应用逐渐拓展到该领域,其中信息抽取技术在该领域的应用成为研究热点。针对信息抽取技术在医疗领域实体关系抽取中的应用,提出一种基于卷积神经网络的弱监督关系抽取方法。该方法通过添加人工规则使训练语料带有实体关系标签,然后将该弱关系训练语料转换为向量特征矩阵,并输入到卷积神经网络进行分类模型训练,最终实现实体关系抽取。实验结果表明,该方法比常规机器学习方法更加准确高效。

关键词: 自然语言处理,实体关系抽取,弱监督,卷积神经网络

Abstract: With medical field are receiving more and more attention,the theory and application of natural language processing began to expand the field,and information extraction technology in the field of application has become a research hotspot.In this paper,based on the application of information extraction technology in medical domain entity relation extraction,a weak supervised relation extraction method based on convolution neural network was proposed.This me-thod adds the artificial rules to the training corpus with the entity relation label,and then transforms the weak relation training corpus into the vector characteristic matrix,next inputs it into the convolution neural network for training the classification model,and finally realizes the entity relation extraction.The experimental results show that the method is more accurate and efficient than the conventional machine learning method.

Key words: Natural language processing,Entity relation extraction,Weak supervision,Convolutional neural network

[1] XU J,ZHANG Z X,WU Z X.Review on Techniques of Entity Relation Extraction[J].New Technology of Library and Information Service,2008(8):1003-3513.(in Chinese) 徐健,张智雄,吴振新.实体关系抽取的技术方法综述[J].现代图书情报技术,2008(8):1003-3513.
[2] YAO L M,RIEDEL S,MCCALLUM A.Unsupervised relation discovery with sense disambiguation[C]∥Proceedings of ACL 2012.2012:712-720.
[3] FADER A,SODERLAND S,ETZIONI O.Identifying relations for open information extraction [C]∥Proceedings of EMNLP 2011.2011:1535-1545.
[4] GRISHMAN R.Information Extraction[M]∥Information Retrieval.Springer New York,2003:8-15.
[5] KAMBHATLA N.Combining lexical,syntactic,and semanticfeatures with maximum entropy models for extracting relations[C]∥ACL 2004 on Interactive Poster and Demonstration Sessions.Association for Computational Linguistics,2004:22.
[6] ZHOU G D,SU J,ZHANG J,et al.Exploring various know-ledge in relation extraction[C]∥ Proceedings of ACL 2005.2005:427-434.
[7] JIANG J,ZHAI C X.A systematic exploration of the feature space for relation extraction[C]∥ Proceedings of HLT-NAACL 2007.2007:113-120.
[8] ZELENKO D,AONE C,RICHARADELLA A.Kernel methods for relation extraction[J].The Journal of Machine Learning Research,2003,3(3):1083-1106.
[9] ZHANG M,ZHANG J,SU J,et al.Acomposite kernel to extract relation sbetween entities with both flat and structured features[C]∥ Proceedings of ACL 2006.2006:825-832.
[10] ZHOU G D,ZHANG M,JI D H,et al.Tree kernel-based relation extraction with context-sensitive structured parse tree information[C]∥Proceedings of EMNLP CoNLL 2007.2007:728-736.
[11] CRAVEN M,KUMLIEN J.Constructing biological knowledge bases by extracting information from text sources[C]∥Procee-dings of AAAI 1999.1999:77-86.
[12] RIEDEL S,YAO L M,MCCALLUM A.Modeling relations and their mentions without labeled text[C]∥Procedings of ECML PKDD 2010.2010:148-163.
[13] SURDEANU M,TIBSHIRANI J,N ALLAPATI R,et al.Manning.Multi-instance multi-label learning for relation extraction[C]∥Proceedings of EMNLP-CoNLL 2012.2012:455-465.
[14] XU W,HOFFMANN R,ZHAO L,et al.Filling knowledge base gaps for distant supervision of relation extraction[C]∥Procee-dings of ACL 2013.2013:665-670.
[15] CHEN Y,GENG G H,JIA H.Density center graph basedweakly supervised classification algorithm[J].Computer Engineering and Applications,2015,51(6):6-10.(in Chinese) 陈燕,耿国华,贾晖.基于密度中心图的弱监督分类方法[J].计算机工程与应用,2015,51(6):6-10.
[16] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing (almost) from scratch[J].The Journal of Machine Learning Research,2011,12(1):2493-2537.
[17] YIH W,HE X,Meek C.Semantic Parsing for Single- Relation Question Answering[C]∥Proceedings of ACL 2014.2014:643-648.
[18] KIM Y.Convolutional neural networks for sentence classification[J].Eprint Arxiv,2014:1408-5882.
[19] ZENG D,LIU K,LAI S,et al.Relation Classification via Convolutional Deep Neural Network[C]∥Proceedings of COLING 2014.2014:2335-2344.
[20] ZOU Y W,GU J G,FU H D.EARES:Medical Entity and Attribute Extraction System based on Relation Annotation[J].Wuhan University Journal of Natural Sciences,2016,2(21):145-150.
[21] ZENG D J.Research on Key Technologies of Relational Extraction for Unstructured Text[D].Beijing:University of Chinese Academy of Sciences,2015.(in Chinese) 曾道建.面向非结构化文本的关系抽取关键技术研究[D].北京:中国科学院自动化研究所,2015.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .