计算机科学 ›› 2017, Vol. 44 ›› Issue (10): 307-311.doi: 10.11896/j.issn.1002-137X.2017.10.055

• 图形图像与模式识别 • 上一篇    下一篇

交互标记跟踪的三维动态数据对齐

潘翔,林俊勉,王学成,刘志,周小龙   

  1. 浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023,浙江工业大学计算机科学与技术学院 杭州310023
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61403342),浙江省自然科学基金(LY15F020024),浙江省文物局项目(2014014)资助

Marking Points Tracking for 3D Dynamic Data Correspondence

PAN Xiang, LIN Jun-mian, WANG Xue-cheng, LIU Zhi and ZHOU Xiao-long   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对三维动态数据特征点匹配所导致的错误对齐问题,采用交互标记和运动跟踪来提高特征点匹配的可靠性和稳定性。首先,对三维动态数据特定帧交互标定特征点;然后,通过运动跟踪和最优预测窗口得到标定特征点在其他帧上的位置;最后,以跟踪匹配的特征点为约束条件来构造等距二分图,得到三维动态数据紧密对齐结果。实验结果表明,所提算法的对齐准确率高于已有算法。

关键词: 三维模型对齐,特征点传递,交互标记,测地距离,最优预测窗口

Abstract: Aiming at that 3D animation feature point matching causes wrong correspondence,this paper proposed interactive mark and motion tracking to improve the reliability and stability of feature point atching.Firstly,the algorithm marks the point on some specified frames.Then,it gets the positions on other frames through motion tracking and optimal prediction window.Finally,the tracking points are used to build isometric bipartite graph for final correspondence.In experiment,the algorithm can get better alignment accuracy than existing algorithms.

Key words: 3D correspondence,Feature point transfer,Interactive mark,Geodesic distance,Optimal prediction window

[1] TAM G K,CHENG Z Q,LAI Y K,et al.Registration of 3Dpoint clouds and meshes:a survey from rigid to nonrigid[J].IEEE Transactions on Visualization and Computer Graphics,2013,9(7):1199-1217.
[2] VAN K O,ZHANG H,HAMERNEH G,et al.A survey onshape correspondence[J].Computer Graphics Forum,2011,30(6):1681-1707.
[3] SMEETS D,KEUSTERMANS J,VANDERMEULEN D,et al.meshSIFT:Local surface features for 3D face recognition under expression variations and partial data[J].Computer Vision and Image Understanding,2013,117(2):158-169.
[4] SAHILLIOGLU Y,YEMEZ Y.Minimum-distortion isometricshape correspondence using EM algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2203-2215.
[5] SAHILLIOGLU Y,YEMEZ Y.Partial 3-D correspondence from shape extremities[J].Computer Graphics Forum,2014,3(6):63-76.
[6] BRONSTEIN A M,BRONSTEIN M M,KIMMEL R.Generali-zed multidimensional scaling:a framework for isometry-invariant partial surface matching[J].National Academy of Sciences,2006,103(5):1168-1172.
[7] ALHASHIM I,XU K,ZHUANG Y,et al.Deformation-driven topology-varying 3D shape correspondence[J].ACM Transactions on Graphics (TOG),2015,34(6):236.
[8] ZHU X Y,GENG G H.3D Model’s Alignment Approach Combining Partial Symmetry[J].Computer Science,2015,2(2):277-279.(in Chinese) 朱新懿,耿国华.一种结合局部对称的三维模型对齐方法[J].计算机科学,2015,2(2):277-279.
[9] KOVNATSKY A,BRONSTEIN M M,Bresson X,et al.Functional correspondence by matrix completion[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:905-914.
[10] RODOLA E,COSMO L,BRONSTEIN M M,et al.Partial Func-tional Correspondence[J].Computer Graphics Forum,2017,36(1):222-236.
[11] POKRASS J,et al.Sparse Modeling of Intrinsic Correspondences[J].Computer Graphics Forum,2012,2(2):459-468.
[12] COSMO L,RODOL E,ALBARELLI A,et al.Consistent Partial Matching of Shape Collections via Sparse Modeling[J].Computer Graphics Forum,2017,6(1):209-221.
[13] SIPIRAN I,BUSTOS B.A Fully Hierarchical Approach forFinding Correspondences in Non-rigid Shapes[C]∥IEEE Conference on Computer Vision and Pattern Recognition.2014:817-824.
[14] PENG Y X,NGO C W,XIAO J G.An approach for shot retrie-val by optimal matching in the bipartite graph[J].Acta Electronica Sinica,2004,2(7):1135-1139.(in Chinese) 彭宇新,NGO C W,肖建国.一种基于二分图最优匹配的镜头检索方法[J].电子学报,2004,2(7):1135-1139.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .