计算机科学 ›› 2018, Vol. 45 ›› Issue (1): 216-222.doi: 10.11896/j.issn.1002-137X.2018.01.038

• 网络与通信 • 上一篇    下一篇

基于多层节点相似度的社区发现方法

张虎,吴永科,杨陟卓,刘全明   

  1. 山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006
  • 出版日期:2018-01-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家高技术研究发展计划(863计划)项目(2015AA015407),国家自然科学基金项目(61432011,61502287,61673248),山西省自然科学基金项目(201601D102030),山西省高等学校科技创新项目(2015104,2015105)资助

Community Detection Method Based on Multi-layer Node Similarity

ZHANG Hu, WU Yong-ke, YANG Zhi-zhuo and LIU Quan-ming   

  • Online:2018-01-15 Published:2018-11-13

摘要: 社区发现是复杂网络研究中的一项重要研究内容,基于节点相似度的凝聚方法是一种典型的社区发现方法。针对现有节点相似度计算方法中存在的不足,提出一种基于多层节点的节点相似度计算方法,该方法既可以有效地计算节点之间的相似度,又可以解决节点相似度相同时的节点合并选择问题。进一步基于这种改进的节点相似度计算方法和团体之间的连接紧密度度量准则构建社区发现模型,并在真实世界的网络上进行社区发现实验。与GN算法、Fast Newman算法和改进的标签传播算法的实验结果相比,该模型可以更加准确地找到各个社区的成员。

关键词: 节点相似度,社区发现,复杂网络

Abstract: Community detection is an important research content in complex network,and the agglomerative method based on the node similarity is a typical method of community detection.Aiming at the shortages of the existing method for calculating the node similarity,this paper proposed a novel method based on the multi-layer node similarity,which can not only calculate the similarity between nodes more efficiently,but also solve the problem of merging nodes when the node similarity is same.Furthermore,this paper constructed the community detection model based on the improved calculation method of the node similarity and the measure criteria of connection tightness between groups,and conducted the community detection experiments in real world network.Compared with the experimental results of GN algorithm,Fast Newman algorithm and the improved label propagation algorithm,the proposed model can be more accurate to find the members of each community.

Key words: Node similarity,Community detection,Complex network

[1] PORTER M A,ONNELA J P,MUCHA P J.Communities in networks[J].Notices American Mathematical Society,2009,56(9):1082-1097.
[2] HUANG F L.Studies on community detection and its application in information network[J].Complex Systems and Complexi-ty Science,2010,7(1):64-74.
[3] LUCE R D,PERRY A D.A method of matrix analysis of group structure[J].Psychometrika,1949,4(2):95-116.
[4] ALBA R D.A graph-theoretic definition of a sociometric clique[J].Journal of Mathematical Sociology,1973,3(1):113-126.
[5] LUCE R D.Connectivity and generalized cliques in sociometric group structure[J].Psychometrika,1950,15(2):169-190.
[6] MOKKEN R J.Cliques,clubs and clans[J].Quality and Quantity,1979,3(2):161-173.
[7] SEIDMAN S B,FOSTER B L.A graph-theoretic generalization of the clique concept[J].Journal of Mathematical Sociology ,1978,6(1):139-154.
[8] SEIDMAN S B.Network structure and minimum degree[J].Social networks,1983,5(3):269-287.
[9] LUCCIO F,SAMI M.On the decomposition of networks intominimally interconnected networks[J].IEEE Transactions Circuit Theory,1969,16(2):184-188.
[10] RADICCHI F,CASTELLANO C,CECCONI F,et al.Defining and identifying communities in networks[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(9):2658-2663.
[11] GUIMERA R,SALES-PARDO M,AMARAL L A N.Modulari-ty from fluctuations in random graphs and complex networks[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(2):025101.
[12] POTHEN A,SIMON H D,LION K P.Partitioning sparse matrices with eigenvectors of graphs[J].SIAM Journal on Matrix Analysis and Applications,1990,1(3):430-452.
[13] GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proceedings of the national academy of sciences,2002,99(12):7821-7826.
[14] REICHARDT J,BORNHOLDT S.Detecting fuzzy community structures in complex networks with a Potts model[J].Physical Review Letters,2004,3(21):218701.
[15] REICHARDT J,BORNHOLDT S.Statistical mechanics of community detection[J].Physical Review E,2006,4(1):016110.
[16] WU F,HUBERMAN B A.Finding communities in linear time:a physics approach[J].The European Physical Journal B-Condensed Matter and Complex Systems,2004,38(2):331-338.
[17] NEWMAN M E J.Fast algorithm for detecting communitystructure in networks[J].Physical Review E,2004,9(6):066133.
[18] BOETTCHER S,PERCUS A G.Optimization with extremaldynamics[J].complexity,2002,8(2):57-62.
[19] ZHOU T,BAI W J,CHENG L J,et al.Continuous extremal optimization for Lennard-Jones clusters[J].Physical Review E,2005,72(1):016702.
[20] SCOTT J.Social Network Analysis:A Handbook(2nd ed)[M].London:Sage Publications,2002.
[21] QIU L Q,CHEN Z Y.Community discovery algorithm based on common neighbor similarity[J].Information System Enginee-ring,2014(5):140-141.(in Chinese) 仇丽靑,陈卓艳.基于共同邻居相似度的社区发现算法[J].信息系统工程,2014(5):140-141.
[22] XU W,LIN B G,LIN S J,et al.Research on the discovery me-thod of social network based on user interaction behavior and similarity[J].Information network security,2015(7):77-83.(in Chinese) 许为,林柏钢,林思娟,等.一种基于用户交互行为和相似度的社交网络社区发现方法研究[J].信息网络安全,2015(7):77-83.
[23] WEI Q J,LI J T,WANG Y.Micro-blog network community discovery algorithm based on user density[J].Computer Applications and Software,2016,33(9):254-258.(in Chinese) 韦庆杰,李京腾,汪雨.基于用户紧密度的微博网络社区发现算法[J].计算机应用与软件,2016,33(9):254-258.
[24] CLAUSET A,NEWMAN M E J,MOORE C.Finding community structure in very large networks[J].Physical review E,2004,70(6):066111.
[25] FANG P,GUO Z B,LI Z T,et al.Online social network community structure detection algorithm based on number of shared friends[J].Journal of Frontiers of Computer Science & Technology,2012,6(5):456-464.
[26] DANON L,DIAZ-GUILERA A,DUCH J,et al.Comparingcommunity structure identification[J].Journal of Statistical Mechanics:Theory and Experiment,2005,2005(9):09008.
[27] NEWMAN M E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113.
[28] KANG X B,JIA C Y.An improved fast community detection algorithm based on label propagation[J].Journal of Hefei University of Technology,2013,6(1):43-47.(in Chinese) 康旭彬,贾彩燕.一种改进的标签传播快速社区发现方法[J].合肥工业大学学报,2013,36(1):43-47.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!