计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 135-139.doi: 10.11896/j.issn.1002-137X.2018.02.024

• 第六届全国智能信息处理学术会议 • 上一篇    下一篇

基于直觉模糊可能性分布的三支决策模型的研究

薛占熬,辛现伟,袁艺林,吕敏杰   

  1. 河南师范大学计算机与信息工程学院 河南 新乡453007 “智慧商务与物联网技术”河南省工程实验室 河南 新乡453007,河南师范大学计算机与信息工程学院 河南 新乡453007 “智慧商务与物联网技术”河南省工程实验室 河南 新乡453007,河南师范大学计算机与信息工程学院 河南 新乡453007 “智慧商务与物联网技术”河南省工程实验室 河南 新乡453007,河南师范大学计算机与信息工程学院 河南 新乡453007 “智慧商务与物联网技术”河南省工程实验室 河南 新乡453007
  • 出版日期:2018-02-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金计划项目(61772176,61402153),河南省基础与前沿技术研究计划项目(132300410174),新乡市科技攻关计划项目(CXGG17002)资助

Study on Three-way Decisions Based on Intuitionistic Fuzzy Probability Distribution

XUE Zhan-ao, XIN Xian-wei, YUAN Yi-lin and LV Min-jie   

  • Online:2018-02-15 Published:2018-11-13

摘要: 直觉模糊集理论和可能性理论的融合是不确定问题领域的一个研究热点。文中提出了一种基于直觉模糊可能性分布的直觉模糊可能性测度(Intuitionistic Fuzzy Probability Measurement,IFPM),并在此基础上构建了三支决策模型。首先,定义了直觉模糊决策空间及该空间上的直觉模糊可能性分布,并对其性质进行了证明,给出了论域对象的隶属度和非隶属度可能性均值的计算方法。然后,讨论了论域对象的隶属度和非隶属度可能性均值与决策阈值的关系,分析了它们之间的概率分布情况。根据概率分布-可能性分布的转换关系,给出决策规则和三支决策模型,提出了一种基于直觉模糊可能性分布的IFPM决策风险计算方法。最后,考虑论域中对象的增减变化引起的IFPM变化,给出对应公式并对动态决策过程进行分析,同时通过实例验证了该模型的有效性。

关键词: 直觉模糊决策空间,直觉模糊可能性分布,IFPM,可能性均值,三支决策

Abstract: The fusion of intuitionistic fuzzy sets theory and possibility theory is a hot spot for dealing with uncertain questions.This paper proposed a three-way decisions model based on the probability distribution of intuitionistic fuzzy probability measurement (IFPM).First of all,the intuitionistic fuzzy decision space and the possibility distribution of the space were defined,and the properties of them were proved.Then,the calculation method of possibility means value for domain object membership degree and the non-membership degree was given.Thirdly,by analyzing the relationship possibility mean value of domain object membership degree and the non-membership degree between decision threshold,its probability distribution was discussed.Thus the three-way decisions model based on the probability distribution to the possibility distribution of transformation relations was expanded.An IFPM decision-making risk calculation method was given.Finally,this paper provided the formulas and analyzed the dynamic decision process of the three-way decisions through analyzing the changing of IFPM under different domain elements,and validated the effectiveness of the model through examples.

Key words: Intuitionistic fuzzy decision space,Intuitionistic fuzzy possibility distribution,IFPM,Possibility mean-value,Three-way decisions

[1] ZADEH L A.Fuzzy sets[J].Information & Control,1965,8(65):338-353.
[2] ATANSSOV K T.Intuitionistic fuzzy sets[J].Fuzzy sets and Systems,1986,20(1):87-96.
[3] MENG F,CHEN X.Entropy and similarity measure of Atanas-sov’s intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures[J].Pattern Analysis and Applications,2016,19(1):11-20.
[4] ZHOU L.On Atanassov’s Intuitionistic Fuzzy Sets in the Complex Plane and the Field of Intuitionistic Fuzzy Numbers[J].IEEE Transactions on Fuzzy Systems,2016,24(2):253-259.
[5] SONG Y,WANG X,LEI L,et al.A novel similarity measure on intuitionistic fuzzy sets with its applications[J].Applied Intelligence,2015,42(2):252-261.
[6] XUE Z A,SI X M,ZHU T L,et al.Study on model of covering-based rough intuitionistic fuzzy sets[J].Computer Science,2016,43(1):44-48,68.(in Chinese) 薛占熬,司小朦,朱泰隆,等.覆盖粗糙直觉模糊集模型的研究[J].计算机科学,2016,43(1):44-48,68.
[7] ZADEH L A.Possibility theory and its application to information analysis[C]∥Proceedings of International Colloquium on Information Theory.Cachan:Juillet,1978:173-182.
[8] DUBOIS D,ESTEVA F,GODO5 L,et al.An information-based discussion of vagueness[C]∥The 10th IEEE International Conference on Fuzzy Systems,2001.IEEE,2001:781-784.
[9] JI L N.Research on fusion theory of possibility distribution and its engineer application[D].Taiyuan:North University of China,2015.(in Chinese) 吉琳娜.可能性分布合成理论及其工程应用研究[D].太原:中北大学,2015.
[10] ZADEH L A.A note on modal logic and possibility theory[J].Information Sciences,2014,279:908-913.
[11] PAWLAK Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11(5):341-356.
[12] YAO Y Y,WONG S K M,LINGRAS P.A decision- theoretic rough set model[C]∥Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems.Tennessee:North-Holland,1990:17-25.
[13] ZIARKO W.Variable precision rough set model[J].Journal of Computer and System Sciences,1993,46(1):39-59.
[14] SLE D,ZIARKO W.The investigation of the Bayesian rough set model[J].International Journal of Approximate Reasoning,2005,40(1):81-91.
[15] YAO Y Y.Probabilistic rough set approximations[J].International Journal of Approximate Reasoning,2008,49(2):255-271.
[16] YAO Y.Three-Way Decision:An Interpretation of Rules inRough Set Theory[C]∥International Conference on Rough Sets and Knowledge Technology.Springer-Verlag,2009:642-649.
[17] YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353.
[18] LIU D,LI T,LIANG D.Three-way Decisions in dynamic decision-theoretic rough sets[C]∥International Conference on Rough Sets and Knowledge Technology.Springer Berlin Heidelberg,2013:291-301.
[19] ZHANG Y P,ZOU H J,ZHAO S.Cost-sensitive Three-way Decisions model based on CAA[J].Journal of NanJing University(Natural Sciences),2015,51(2):447-452.(in Chinese) 张燕平,邹慧锦,赵姝.基于CCA的代价敏感三支决策模型[J].南京大学学报(自然科学版),2015,51(2):447-452.
[20] XUE Z A,ZHU T L,XUE T Y,et al.Three-way Decisionsmodel based on intuitionistic fuzzy sets[J].Computer Science,2016,43(6):285-288,297.(in Chinese) 薛占熬,朱泰隆,薛天宇,等.基于直觉模糊集的三支决策模型[J].计算机科学,2016,43(6):285-288,297.
[21] YU H,WANG G Y,LI T Y,et al.Three-way decisions:Me-thods and practices for complex problem solving[M].Beijing:Science Press,2015:20-48.(in Chinese) 于洪,王国胤,李天瑞,等.三支决策:复杂问题求解方法与实践[M].北京:科学出版社,2015:20-48.
[22] YAO Y Y.Three-Way Decisions and Cognitive Computing[J].Cognitive Computation,2016(4):1-12.
[23] 刘盾,李天瑞,苗夺谦,等.三支决策和粒计算[M].北京:科学出版社,2013:1-13.
[24] KLIR G J,BEHZAD P,GEOREG J,et al.Probability-possibility transformations:a comparison[J].International Journal of Ge-neral Systems,1993,21(3):291-310.
[25] DUBOIS D,PRADE H,SANDRI S.On Possibility Probability Transformations[M]∥Fuzzy Logic.Netherlands:Springer,1997:103-112.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .