计算机科学 ›› 2018, Vol. 45 ›› Issue (2): 280-286.doi: 10.11896/j.issn.1002-137X.2018.02.048

• 人工智能 • 上一篇    下一篇

基于直觉模糊熵的交叉评价方法

范建平,薛坤,吴美琴   

  1. 山西大学经济与管理学院 太原030006,山西大学经济与管理学院 太原030006,山西大学经济与管理学院 太原030006
  • 出版日期:2018-02-15 发布日期:2018-11-13
  • 基金资助:
    本文受山西省高等学校哲学社会科学研究项目(2017302)资助

Cross Evaluation Method Based on Intuitionistic Fuzzy Entropy

FAN Jian-ping, XUE Kun and WU Mei-qin   

  • Online:2018-02-15 Published:2018-11-13

摘要: 对基于相对贴近度的第二目标模型进行模糊扩展,充分利用模糊信息,定义一种新的方法将三角模糊效率值转化为直觉模糊集,并用直觉模糊熵对模糊交叉效率进行集结,然后用三元有向距离指数对全局模糊效率值进行排序。最后用基于直觉模糊熵的交叉评价方法,对国家自然科学基金委员会管理科学部认定的管理科学与系统科学10种重要期刊在2011年的引证效率进行分析,以此来说明该方法的有效性与可行性。

关键词: 模糊DEA,交叉效率,相对贴近度,直觉模糊熵

Abstract: This paper endeavored to extend the secondary goal model based on the relative closeness to the fuzzy environment and made full use of fuzzy information.Then,this paper proposed a new method to convert triangular fuzzy efficiency to intuitionistic fuzzy set,so that it can integrate the fuzzy efficiency with intuitionistic fuzzy entropy.After that,ternary directional distance index was used to rank the whole fuzzy efficiencies.At last,the citation efficiencies of ten management science and system science journals which are identified as the important journals by Management Scien-ce Department of National Natural Science Foundation of China in 2011 were analyzed to illustrate the feasibility and validity of the proposed method.

Key words: Fuzzy data envelopment analysis,Cross-efficiency,Relative closeness,Intuitionistic fuzzy entropy

[1] SENGUPTA J K.A fuzzy systems approach in data envelopment analysis[J].Computers & Mathematics with Applications,1992,24(8):259-266.
[2] ZADEH L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
[3] GUO P J,TANAKA H.Fuzzy DEA:a perceptual evaluation method[J].Fuzzy Sets and Systems,2001,119(1):149-160.
[4] KAO C,LIU S T.Fuzzy efficiency measures in data envelopment analysis[J].Fuzzy Sets and Systems,2000,113(3):427-437.
[5] WU H P,XUAN G L,SHUAI X.A Confidence DEA Model for LR-Type Fuzzy Numbers[J].Systems Engineering-Theory & Practice,2003,9(9):28-34.(in Chinese) 吴海平,宣国良,帅旭.基于LR 模糊数的置信 DEA模型[J].系统工程理论与实践,2003,9(9):28-34.
[6] WANG Y M,LUO Y,LIANG L.Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to perfor-mance assessment of manufacturing enterprises[J].Expert Systems with Applications,2009,36(3):5205-5211.
[7] LERTWORASIRIKUL S,FANG S C,JOINES J A,et al.Fuzzy data envelopment analysis (DEA):a possibility approach[J].Fuzzy Sets and Systems,2003,139(2):379-394.
[8] ZHOU Z B,SUN L,LIU D B,et al.Fuzzy Non-radial DEA/PS Model with Assurance Regions-an Empirical Analysis based on 24 Institutes of CAS[J].Chinese Journal of Management Scie-nce,2014,22(2):75-84.(in Chinese) 周忠宝,孙亮,刘德彬,等.存在保证域的模糊非径向偏好DEA模型——基于中科院24个研究所的实证分析[J].中国管理科学,2014,22(2):75-84.
[9] WANG M Q,LIANG L,LI Y J.Fuzzy Super-Efficiency DEA Model[J].Chinese Journal of Management Science,2009,17(2):117-124.(in Chinese) 王美强,梁樑,李勇军.超效率DEA模型的模糊扩展 [J].中国管理科学,2009,17(2):117-124.
[10] ZHOU Z B,LV S Y,MA C Q,et al.Fuzzy Super-Efficiency DEA Model with Assurance Regions[J].Chinese Journal of Management Science,2011,19(6):156-162.(in Chinese) 周忠宝,吕思雅,马超群,等.存在保证域的模糊超效率 DEA 模型[J].中国管理科学,2011,19(6):156-162.
[11] HU Q H,XU Q,WANG Y M.Cross-Efficiency EvaluationMethod of Fuzzy DEA Based on Fuzzy Expected Value[J].Computer System & Application,2014,3(9):224-229.(in Chinese) 胡庆红,许强,王应明.基于模糊期望值的模糊DEA交叉效率评价方法[J].计算机系统应用,2014,3(9):224-229.
[12] WANG M Q,LI Y J.Evaluation of Suppliers with Fuzzy Inputs and Outputs Based on DEA Game Cross-efficiency Model[J].Industrial Engineering and Management,2015,20(1):95-99.(in Chinese) 王美强,李勇军.输入输出具有模糊数的供应商评价——基于DEA博弈交叉效率方法[J].工业工程与管理,2015,20(1):95-99.
[13] DOTOLI M,EPICOCO N,FALAGARIO M,et al.A cross-efficiency fuzzy data envelopment analysis technique for perfor-mance evaluation of decision making units under uncertainty[J].Computers & Industrial Engineering,2015,79(2):103-114.
[14] SIRVENT I,LEN T.Cross-Efficiency in Fuzzy Data Envelopment Analysis (FDEA):Some Proposals[M]∥Performance Measurement with Fuzzy Data Envelopment Analysis.Springer Berlin Heidelberg,2014:101-116.
[15] LUCA A D,TERMINI S.A definition of nonprobabilistic entropy in the setting of fuzzy theory[J].General Systems,1972, 20(4):301-312.
[16] BURILLO P,BUSTINCE H.Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J].Fuzzy Sets and Systems,1996,78(3):305-316.
[17] HUNG W L,YANG M S.Fuzzy entropy on intuitionistic fuzzy sets[J].International Journal of Intelligent Systems,2006,21(4):443-451.
[18] WU J Z,ZHANG Q.Multi-criteria decision making methodbased on intuitionistic fuzzy weighted entropy[J].Expert Systems with Applications,2011,38(1):916-922.
[19] MAO J J,YAO D B,WANG C C.A novel cross-entropy and entropy measures of IFSs and their applications[J].Knowledge-Based Systems,2013,48(2):37-45.
[20] GAO M M,SUN T,ZHU J J.Revised axiomatic definition and structural formula of intuitionistic fuzzyentropy [J].Control and Decision,2014,29(3):470-474.(in Chinese) 高明美,孙涛,朱建军.一种改进的直觉模糊熵公理化定义和构造公式[J].控制与决策,2014,29(3):470-474.
[21] MENG F,CHEN X.Entropy and similarity measure of Atanas-sov’s intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures[J].Pattern Analysis and Applications,2016,19(1):11-20.
[22] ATANASSOV K T.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
[23] FAN J P,CHEN J,WU M Q,et al.Overall Performance Evalua-tion for DMUs with Ternary Efficiency Interval[J].Chinese Journal of Management Science,2016,4(2):153-161.(in Chinese) 范建平,陈静,吴美琴,等.三元效率区间下决策单元的全局绩效评价[J].中国管理科学,2016,24(2):153-161.
[24] SONG P,LIANG J Y,QIAN Y H.A two-grade approach to ranking interval data[J].Knowledge-Based Systems,2012,27(3):234-244.
[25] LIANG L,WU J,COOK W D,et al.Alternative secondary goals in DEA cross-efficiency evaluation[J].International of Production Economics,2008,113(2):1025-1030.
[26] WANG Y M,CHIN K S,LUO Y.Cross-efficiency evaluation based on ideal and anti-ideal decision making units[J].Expert System with Applications,2011,38(8):10312-10319.
[27] WANG X,KERRE E E.Reasonable properties for the ordering of fuzzy quantities[J].Fuzzy Sets and Systems,2001,118(3):375-385.
[28] CHANG W.Ranking of fuzzy utilities with triangular membership functions[C]∥Proceedings of International Conference on Policy Analysis and Systems.1981:272.
[29] 谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2013:20-25.
[30] YANG G L,YANG J B,LIU W B,et al.Cross-efficiency aggregation in DEA models using the evidential-reasoning approach [J].European Journal of Operational Reasearch,2013,231(2):393-404.
[31] ZHANG Z Q,ZHANG Z L,YE Q,et al.Study on InternalStructure of Important Management Periodicals Based on Cross-citation Network[J].Science of Science & Management of S & T,2010,31(5):66-70.(in Chinese) 张紫琼,张自立,叶强,等.基于互引网络的管理学部重要期刊内部关系研究[J].科学学与科学技术管理,2010,31(5):66-70.
[32] WAN L,CHENG H P.Research on Efficiency for Academic Journal Citation Based on Data Envelopment Analysis Approach[J].Journal of the China Society for Scientific and Technical Information,2013,32(12):1295-1302.(in Chinese) 万莉,程慧平.基于DEA方法的学术期刊引证效率研究[J].情报学报,2013,32(12):1295-1302.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!