计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 67-68.doi: 10.11896/j.issn.1002-137X.2018.03.011

• 第十届全国几何设计与计算学术会议 • 上一篇    下一篇

凸六面体上的双有理映射

叶金云,王旭辉,钱毅加   

  1. 合肥工业大学数学学院 合肥230009,合肥工业大学数学学院 合肥230009,合肥工业大学数学学院 合肥230009
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金(61772167)资助

Birational Trilinear Mapping on Convex Hexahedrons

YE Jin-yun, WANG Xu-hui and QIAN Yi-jia   

  • Online:2018-03-15 Published:2018-11-13

摘要: 借助三维重心坐标的特性,将二维双有理映射的结果推广到三维凸六面体的情形下,即给凸六面体上的每个顶点赋予适当的权值,从而得到凸六面体上的一个三线性双有理映射;此外,通过一个实例说明了该方法的有效性。

关键词: 重心坐标,双有理映射,凸六面体,权值

Abstract: Based on the knowledge of three dimensional generalized barycentric coordinates,the results of birational trilinear mapping on planar quadrilateral were generalized to three dimensional convex hexahedron,namely,by assigning a suitable weight to every vertex of convex hexahedron,a three dimensional birational mapping was achieved.In addition,an example was given to illustrate the correctness of this method.

Key words: Barycentric coordinates,Birational mapping,Convex hexahedron,Weight

[1] SEDERBERG T W,GOLDMAN R N.Birational 2D Free-Form Deformation of degree 1×n[J].Computer Aided Geometric Design,2016,44:1-9.
[2] HUDSON H P.Cremona Transformations in Plane and Space[M].Cambridge:Cambridge University Press,1927.
[3] SEDERBERG T W,ZHENG J.Birational quadrilateral maps[J].Computer Aided Geometric Design,2015,32:1-4.
[4] FLOATER M S.The inverse of a rational bilinear mapping[J].Computer Aided Geometric Design,2015,33:46-50.
[5] LEE S Y,CHWA K Y.SHIN S Y.Image metamorphosis using snakes and free-form deformations[C]∥Proceeding of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.1995:59-69.
[6] MANZONI A,QUARTERONI A,ROZZA G.Shape optimization for viscous flows by reduced basis methods and free-form deformations[J].International Journal for Numerical Methods in Fluids,2012,70(5):646-670.
[7] FRANGI A F,NIESSEN W J,VIERGEVER M A.Three-dimensional modeling for functional analysis of cardiac images,a review[J].IEEE Transactions on Medical Imaging,2001,20(1):2-5.
[8] HUANG X,PARAGIOS N,METAXAS D N.Shape registration in implicit spaces using information theory and free form deformations[J].IEEE Transactions on Medical Imaging,2006,28(8):1303-1318.
[9] WARREN J,SCHAEFER S,et al.Barycentric coordinates for convex sets[J].Advances in Computatioanl Mathematics,2007,27(3):319-338.
[10] WARREN J.Barycentric coordinates for convex polytopes[J].Advances in Computational Mathematics,1996,6(1):97-108.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .