计算机科学 ›› 2018, Vol. 45 ›› Issue (3): 268-273.doi: 10.11896/j.issn.1002-137X.2018.03.043

• 图形图像与模式识别 • 上一篇    下一篇



  1. 南华大学电气工程学院 湖南 衡阳421001,南华大学电气工程学院 湖南 衡阳421001
  • 出版日期:2018-03-15 发布日期:2018-11-13
  • 基金资助:

License Plate Detection Based on Principal Component Analysis Network

ZHONG Fei and YANG Bin   

  • Online:2018-03-15 Published:2018-11-13

摘要: 车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提高算法的鲁棒性。算法首先采用Sobel算子边缘检测和边缘对称性分析获取车牌候选区域;然后将候选区域输入到主成分分析网络中进行车牌深度特征提取,并利用支持向量机实现对车牌区域的判别;最后采用非极大值抑制算法标记最佳车牌检测区域。利用收集的复杂场景下的车辆图像对所提方法的参数进行分析,并将其与传统方法进行比较。实验结果表明,所提算法的鲁棒性高,性能优于传统的车牌检测方法。

关键词: 车牌检测,主成分分析网络,特征提取,非极大值抑制算法

Abstract: License plate recognition is the core technology of intelligent transportation system (ITS).License plate detection is a crucial step in the license plate recognition technology.Since only low-level artificial features are used to achieve license plates detection in most traditional methods,the detection error rates are usually low in complex scenes.In this paper,a novel license plate detection method based on principal component analysis network (PCANet) was proposed.Firstly,the license plate candidate area is marked with Sobel operator based edge detection and edges symmetry analysis.Secondly,by inputting candidate area into PCANet,the deep feature extraction is peformed for candidate area in PCANet and the support vector mechine is used to confirm the license plate.Finally,an efficient non maximum suppression (NMS) is used to label the best license plate detection area.For performance evaluation,a dataset consisting of images in various scenes was used to test the proposed method,and the results were also compared with those of traditional methods.The experimental results show the robustness of the proposed algorithm,and its performance is also superior to the traditional method of license plate detection.

Key words: License plate detection,PCANet,Feature extraction,NMS

[1] LE T S,TRAN V N,HAMAMOTO K.A robust and flexible license plate detection method[C]∥Proceedings of International Conference on Advanced Technologies for Communications.Hanoi,Vietnam,2015:326-331.
[2] DU S,IBRAHIM M,SHEHATA M,et al.Automatic license plate recognition (ALPR):a state-of-the-art review[J].IEEE Transactions on Circuits & Systems for Video Technology,2013,23(2):311-325.
[3] ZHENG D,ZHAO Y,WANG J.An efficient method of license plate location[J].Pattern Recognition Letters,2005,26(15):2431-2438.
[4] FARADJI F,REZAIE A H,ZIARATBAN M.A morphological-based license plate location[C]∥Proceedings of International Conference on Image Processing.San Antonio,Texas,USA,2007:57-60.
[5] DUN J,ZHANG S,YE X,et al.Chinese license plate localization in multi-lane with complex background based on concomitant colors[J].IEEE Intelligent Transportation Systems Magazine,2015,7(3):51-61.
[6] ZHOU W,LI H,LU Y,et al.Principal visual word discovery for automatic license plate detection[J].IEEE Transactions on Image Processing,2012,21(9):4269-4279.
[7] WAFY M,MADBOULY A M M.Efficient method for vehicle license plate identification based on learning a morphological feature[J].Intelligent Transport Systems,2016,10(6):389-395.
[8] FAN C M,INFORMATION S O,UNIVERSITY W.Introduction and analyzing of the license plate pocation technology[J].Information Technology,2013,7(11):167-168.
[9] FAN R E,CHANG K W,HSIEH C J,et al.Liblinear:A Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9(9):1871-1874.
[10] WANG R,SANG N,WANG R,et al.Novel license plate detection method for complex scenes[C]∥Proceedings of International Conference on Image & Graphics.Qingdao,Shandong,China,2013:318-322.
[11] CHEUNG B,SABLE C.Hybrid evolution of convolutional networks[C]∥Proceedings of International Conference on Machine Learning and Applications Workshops.Honolulu,Hawaii,USA,2011:293-297.
[12] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Tran-sactions on Pattern Analysis & Machine Intelligence,2015,37(9):1904-1916.
[13] LIU X,GAO J,HE X,et al.Representation learning usingmulti-task deep neural networks for semantic classification and information retrieval[C]∥Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Denver,Colorado,USA,2015:912-921.
[14] ZHAO Z H,YANG S P,ZENG-QIANG M A.License platecharacter recognition based on convolutional neural network lenet-5[J].Journal of System Simulation,2010,22(3):638-641.
[15] CHAN T H,JIA K,GAO S,et al.PCANet:a simple deep lear-ning baseline for image classification?[J].IEEE Transactions on Image Processing,2014,24(12):5017-5032.
[16] SUN C,VALLOTTON P.Fast linear feature detection using multiple directional non-maximum suppression[C]∥Procee-dings of International Conference on Pattern Recognition.Hong Kong,China,2009:147-157.
[17] LIU C,WECHSLER H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[J].IEEE Transactions on Image Processing,2002,1(4):467-476.
[18] CUN Y L,HUANG F J,BOTTOU L.Learning methods for generic object recognition with invariance to pose and lighting[C]∥Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition.USA,2004:97-104.

No related articles found!
Full text



[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .