计算机科学 ›› 2018, Vol. 45 ›› Issue (5): 260-265.doi: 10.11896/j.issn.1002-137X.2018.05.045

所属专题: 医学图像

• 图形图像与模式识别 • 上一篇    下一篇

基于血管内超声图像的心血管动脉粥样硬化斑块组织自动定征的研究

黄志杰,王伊侬,王青   

  1. 南方医科大学生物医学工程学院医学信息研究所 广州510515南方医科大学广东省医学图像重点实验室 广州510515,南方医科大学生物医学工程学院医学信息研究所 广州510515南方医科大学广东省医学图像重点实验室 广州510515,南方医科大学生物医学工程学院医学信息研究所 广州510515南方医科大学广东省医学图像重点实验室 广州510515
  • 出版日期:2018-05-15 发布日期:2018-07-25
  • 基金资助:
    本文受广东省自然科学基金(2014A030313329),国家自然科学基金(81371560),广东省省级科技计划基金(2013B021800039)资助

Automatic Characterization Study of Atherothrombotic Plaques Based on Intravascular Ultrasound Images

HUANG Zhi-jie, WANG Yi-nong and WANG Qing   

  • Online:2018-05-15 Published:2018-07-25

摘要: 为了获取患者心血管内斑块特征的准确信息,并辅助临床医生对动脉粥样硬化区域进行判断和识别,文中进行了基于血管内超声(IVUS)图像的心血管粥样硬化斑块组织自动定征的研究。本研究收集了10个心血管疾病患者的IVUS图像,共207块斑块样本。首先,确定滑动邻域块的尺寸,令其中心像素遍历斑块区域,遍历过程中计算每个滑动邻域块的灰度均值和熵,并沿4个方向运用灰度共生矩阵法求出共生矩阵的10个局部特征;然后,对IVUS图像进行Gabor滤波和局部二值模式(LBP)处理,获得了更多的图像纹理特征;最后,通过线性分类器Liblinear、随机森林分类器(Random Forests)和调和最小值-广义学习向量量化分类器(H2M-GLVQ)对降维后的特征数据进行分类判决。将医生人工标记的结果作为金标准,自动定征的实验结果表明,随机森林和H2M-GLVQ分类器总体上对斑块组织的识别准确率均达到80%以上,其中随机森林分类器识别纤维化、脂质和钙化样本斑块的平均识别准确率分别为89.04%,80.23%和73.77%。

关键词: 血管内超声图像,自动定征,纹理特征,分类判决

Abstract: In order to obtain the accurate information of atherothrombotic plaques in the cardiovasculars and assist the diagnosis and classification of the plaque tissues,this study applied apply a machine learning method to automatically characterize the atherothrombotic plaques in intravascular ultrasound(IVUS) grayscale images.In this study,207 plaque samples in the IVUS images were collected from 10 patients with cardiovascular disease in the hospital.Firstly,the size of a sliding patch is determined and then its centre pixel traverses in the plaque area.The values of the mean and entropy are calculated.Ten features of the patch along 4 directions are respectively obtained by using co-occurrence matrix method.Secondly,more texture features of the plaque region in the IVUS images are obtained by using Gabor filter and local binary pattern(LBP) methods.Finally,the classifiers of Liblinear,random forests and Harmonic to Minimum-Ge-neralized LVQ(H2M-GLVQ) are used to classify these pixels in the plaque tissues based on the features obtained through reducing dimension by using principal component analysis(PCA).The manual characterization by an experien-ced physician is considered as the gold standard.Results of the proposed automatic characterization method show the general identification rates of classifiers of random forests and H2M-GLVQ are over 80%.Compared with other two classifiers,the identification rate of random forests is relatively higher,i.e.89.04%,80.23% and 73.77% respectively for fibrotic,lipidic and calcified plaque tissues.

Key words: Intravascular ultrasound image,Automatic characterization,Texture features,Classification judgment

[1] HANSSON G K.Inflammation,atherosclerosis,and coronaryartery disease[J].The New England Journal of Medicine,2005,352(16):1685-1695.
[2] VIRMANI R,KOLODGIE F D,BURKE A P,et al.Atherosclerotic plaque progression and vulnerability to rupture-angiogenesis as a source of intraplaque hemorrhage[J].Arteriosclerosis Thrombosis and Vascular Biology,2005,25(10):2054-2061.
[3] JEERS S,NARBUTE I,ERGLIS A.Use of intravascular imaging in managing coronary artery disease[J].World Journal of Cardiology,2014,6(6):393-404.
[4] NAIR A,KUBAN B D,OBUCHOWSKI N,et al.Assessingspectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data[J].Ultrasound in Medicine Biology,2001,27(10):1319-1331.
[5] KATOUZIAN A,SATHYANARAYANAN S,BASERI B,et al.Challenges in atherosclerotic plaque characterization with intravascular ultrasound:From data collection to classification[J].IEEE Transactions on Information Technology in Biomedicine:A Publication of IEEE Engineering in Medicine and Biology Society,2008,12(3):315-327.
[6] NAIR A,KUBAN B D,TUZCU E M,et al.Coronary plaque classification with intravascular ultrasound radiofrequency data analysis[J].Circulation,2002,106(17):2200-2206.
[7] MAURICE R L,FROMAGEAU J,BRUSSEAU L,et al.On the potential of the lagrangian estimator for endovascular ultrasound elastography:In vivo human coronary artery study[J].Ultrasound in Medicine and Biology,2007,33(8):1199-1205.
[8] ARAKI T,IKEDA N,SHUKLA D,et al.PCA-based pollingstrategy in machine learning framework for coronary artery di-sease risk assessment in intravascular ultrasound:A link between carotid and coronary grayscale plaque morphology[J].Computer Methods and Programs in Biomedicine,2016,128:137-158.
[9] LO VERCIO L,ORLANDO J I,DEL FRESNO M,et al.Assessment of image features for vessel wall segmentation in intravascular ultrasound images[J].International Journal of Computer Assisted Radiology and Surgery,2016,11(8):1397-1407.
[10] ATHANASIOU L S,KARVELIS P S,TSAKANIKAS V D,et al.A novel semiautomated atherosclerotic plaque characteri-zation method using grayscale intravascular ultrasound images:Comparison with virtual histology[J].IEEE Transactions on Information Technology in Biomedicine,2012,16(3):391-400.
[11] JABASON E.Performance analysis of contourlet features with SVM classifier for the characterization of atheromatous plaque in intravascular ultrasound images[J].International Journal of Engineering Research & Applications,2014,4(3):35-42.
[12] ZHANG J,TAN T,MA L.Invariant texture segmentation via circular gabor filters[C]∥IEEE International Conference on Pattern Recognition.2002:901-904.
[13] PIETIK O T,INEN M,et al.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2002,24(7):971-987.
[14] GIANNOGLOU V G,STAVRAKOUDIS D G,T HEOCHAIRS J B.IVUS-based characterization of atherosclerotic plaques using feature selection and SVM classification[C]∥IEEE International Conference on Bioinformatics & Bioengineering.2012:715-720.
[15] FAN R E,CHANG K W,HSIEH C J,et al.Liblinear:A library for large linear classification[J].Journal of Machine Learning Research,2008,9(9):1871-1874.
[16] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
[17] QIN A K,SUGANTHAN P N.Rapid and brief communication:Initialization insensitive LVQ algorithm based on cost-function adaptation[J].Pattern Recognition,2005,38(5):773-776.
[18] Sato A.Generalized learning vector quantization[C]∥Confe-rence on Neural Information Processing Systems.1996:423-429.
[19] SUN Z,WANG L X,ZHOU Y.Automated tissue characterization of intravascular ultrasound gray-scale images[J].Journal of Biomedical Engineering,2016,33(2):287-294.(in Chinese) 孙正,王立欣,周雅.血管内超声灰阶图像的自动组织标定[J].生物医学工程学杂志,2016,33(2):287-294.
[20] HARALICK R M.Texture features for image classification[J].IEEE Transactions on Systems Man & Cybernetics,1990,3(6):610-621.
[21] SCHOENHAGEN P,CROWE T,NICHOLL S,et al.IVUSmake easy[M].America,Paul G.Informa Healthcare,2008.
[22] QIN A K,SUGANTHAN P N,LIANG J J.A new generalized LVQ algorithm via harmonic to minimum distance measure transition[C]∥IEEE International Conference on Systems,Man &Cybernetics.2004:4821-4825.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!