计算机科学 ›› 2018, Vol. 45 ›› Issue (8): 54-62.doi: 10.11896/j.issn.1002-137X.2018.08.010

• 2017 中国多媒体大会 • 上一篇    下一篇

改进的混合蛙跳算法及其在多阈值图像分割中的应用

张新明1,2, 程金凤1, 康强1, 王霞1   

  1. 河南师范大学计算机与信息工程学院 河南 新乡4530071
    河南省高校计算智能与数据挖掘工程技术研究中心 河南 新乡4530072
  • 收稿日期:2017-10-24 出版日期:2018-08-29 发布日期:2018-08-29
  • 作者简介:张新明(1963-),男,教授,CCF会员,主要研究方向为模式识别、数字图像处理和智能优化算法等,E-mail:xinmingzhang@126.com(通信作者); 程金凤(1990-),女,硕士生,主要研究方向为数字图像处理; 康 强(1989-),男,硕士生,主要研究方向为数字图像处理和智能优化算法; 王 霞(1993-),女,硕士生,主要研究方向为数字图像处理和智能优化算法。
  • 基金资助:
    本文受河南省重点科技攻关项目(132102110209),河南省高等学校重点科研项目(19A520026)资助。

Improved Shuffled Frog Leaping Algorithm and Its Application in Multi-threshold Image Segmentation

ZHANG Xin-ming1,2, CHENG Jin-feng1, KANG Qiang1, WANG Xia1   

  1. College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China1
    Engineering Technology Research Center for Computing Intelligence & Data Mining of Henan Province,Xinxiang,Henan 453007,China2
  • Received:2017-10-24 Online:2018-08-29 Published:2018-08-29

摘要: 针对混合蛙跳算法(Shuffled Frog Leaping Algorithm,SFLA)存在的计算复杂度高、优化效率不理想等问题,提出了一种改进的混合蛙跳算法(Improved Shuffled Frog Leaping Algorithm,ISFLA)。在原始 SFLA的基础上进行如下改进:首先,将其中每次只更新组内最差青蛙的方式改为更新组内所有青蛙的方式,这既增大了获得优质解的概率,又省去了调整组内迭代次数的步骤,从而提升了优化效率和可操作性;其次,将基于局部最优更新的方法和基于全局最优更新的方法融合为一种混合扰动更新方法,从而避免了复杂条件的选择步骤,进一步提升了优化效率;最后,去掉随机更新方式,以免优质解被破坏,从而提高了整体的优化性能。将 ISFLA 用于 CEC2005和CEC2015连续基准函数的优化测试和基于Renyi 熵的灰度和彩色图像分割的多阈值选择实验中,结果表明,与 SFLA 和state-of-the-art的LSFLA 相比,ISFLA 具有更高的优化效率,更适用于多阈值图像分割的阈值选择。

关键词: 智能优化算法, 混合蛙跳算法, 图像分割, 多阈值图像分割, Renyi熵

Abstract: Aiming at the disadvantages of shuffled frog leaping algorithm (SFLA),such as high computational comple-xity and poor optimization efficiency,an improved shuffled frog leaping algorithm (ISFLA) was proposed in this paper.The following improvements have been made on the basis of SFLA.Firstly,the method which only updates the worst frog in SFLA is replaced by the method which updates all frogs in each group.This replacement can increase the probability of obtaining the high quality solutions,omit the steps of setting the number of iterations in the group and then improve the optimization efficiency and operability.Secondly,the method based on local optimum updating and the method based on global optimum updating are combined into a hybrid disturbance updating method,which avoids the tedious condition selection steps and further improves the optimization efficiency.Finally,the random updating method is removed to avoid destroying the superior solutions and further enhance the overall performance optimization.ISFLA was tested on the benchmark functions from CEC2005 and CEC2015,and was applied to the multi-threshold gray and color images segmentation based on Renyi entropy.The experimental results show that,ISFLA obtains higher optimization efficiency and is more suitable for threshold selection of multi-threshold image segmentation compared with SFLA and the state-of-the-art LSFLA.

Key words: Intelligent optimization algorithm, Shuffled frog leaping algorithm, Image segmentation, Multi-threshold ima-ge segmentation, Renyi entropy

中图分类号: 

  • TP391
[1]EUSUFF M M,LANSEY K E.Optimization of water distribution network design using the shuffled frog leaping algorithm [J].Journal of Water Resources Planning & Management,2003,129(3):210-225.
[2]JI C M,LI J W,ZHANG X M,et al.Application of immune-shuffled frog-leaping algorithm to optimized operation of cascade hydropower stations for short-term power generation[J].Journal of Hydroelectric Engineering,2015,34(1):29-36.(in Chinese)纪昌明,李继伟,张新明,等.梯级水电站短期发电优化调度的免疫蛙跳算法应用研究[J].水力发电学报,2015,34(1):29-36.
[3]ZHENG S L,YANG X N.Group initialization technique of hybrid frog leap algorithm for cognitive radio cooperative spectrum sensing [J].Acta Physica Sinica,2013,62(7):492-497.(in Chinese)郑仕链,杨小牛.用于认知无线电协作频谱感知的混合蛙跳算法群体初始化技术[J].物理学报,2013,62(7):492-497.
[4]LIU Z Z,WANG F B.Improvement of discrete shuffled frog-Leaping algorithm and application in compressed sensing reconstruction [J].Journal of Jilin University(Engineering and Technology Edition),2016,46(4):1261-1268.(in Chinese)刘洲洲,王福豹.改进的离散混合蛙跳算法压缩感知信号重构及应用[J].吉林大学学报(工学版),2016,46(4):1261-1268.
[5]TANG D Y,YANG J,DONG S B,et al.A lévy flight-Based shuffled frog-leaping algorithm and its applications for conti-nuous optimization problems[J].Applied Soft Computing,2016,49:641-662.
[6]ZHAO F,ZHANG G Z.Shuffled frog leaping algorithm based on new search strategy [J].Computer Applications and Software,2015,32(8):224-228.(in Chinese)赵芳,张桂珠.基于新搜索策略的混合蛙跳算法[J].计算机应用与软件,2015,32(8):224-228.
[7]ZHANG Q,LI P C.Adaptive grouping chaotic cloud modelshuffled frog leaping algorithm for continuous space optimization problems [J].Control and Decision,2015,30(5):923-928.(in Chinese)张强,李盼池.自适应分组混沌云模型蛙跳算法求解连续空间优化问题[J].控制与决策,2015,30(5):923-928.
[8]KAUR P,MEHTA S.Resource provisioning and work flowscheduling in clouds using augmented shuffled frog leaping algorithm[J].Journal of Parallel & Distributed Computing,2016,101:41-50.
[9]HORNG M H,LIOU R J.Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J].Expert Systems with Application,2011,38(12):14805-14811.
[10]ZHANG X M,TU Q,KANG Q,et al.Grey wolf optimization algorithm with double-hunting modes and its application to multi-threshold image segmentation [J].Journal of Shanxi University (Natural Science Edition),2016,39(3):378-385.(in Chinese)张新明,涂强,康强,等.双模狩猎的灰狼优化算法在多阈值图像分割中应用[J].山西大学学报(自然科学版),2016,39(3):378-385.
[11]SAHOO P,WILKINS C,YEAGER J.Threshold selection using Renyi’s entropy[J].Pattern Recognition,1997,30(1):71-84.
[12]ZHANG X M,YIN X X,TU Q.High-dimensional multilevelthresholding based on BBO with dynamic migration and salt & pepper mutation [J].Optics and Precision Engineering,2015,23(10):2943-2951.(in Chinese)张新明,尹欣欣,涂强.动态迁移和椒盐变异融合生物地理学优化算法的高维多阈值分割 [J].光学精密工程,2015,23 (10):2943-2951.
[13]SUGANTHAN P N,HANSEN N,LIANG J J,et al.Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization:Technical Report,KanGAL Report #2005005[R].Singapore:Kanpur Genetic Algorithms Laboratory,Nanyang Technological University,2005.
[14]LIANG J J,QU B Y,SUGANTHAN P N,et al.Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization:Technical Report 201411A.Computational Intelligence Laboratory,Zhengzhou University,Zhengzhou China And Technical Report,Nanyang Technological University,Singapore,2014.
[1] 叶中玉, 吴梦麟. 融合时序监督和注意力机制的脉络膜新生血管分割[J]. 计算机科学, 2021, 48(8): 118-124.
[2] 金海燕, 彭晶, 周挺, 肖照林. 基于Graph Cuts多特征选择的双目图像分割方法[J]. 计算机科学, 2021, 48(8): 150-156.
[3] 许华杰, 张晨强, 苏国韶. 基于深层卷积残差网络的航拍图建筑物精确分割方法[J]. 计算机科学, 2021, 48(8): 169-174.
[4] 杨秀璋, 武帅, 夏换, 于小民. 基于自适应图像增强技术的水族文字提取与识别研究[J]. 计算机科学, 2021, 48(6A): 74-79.
[5] 杨志伟, 戴铭, 周智恒. 基于直方图差异的工业产品表面缺陷检测方法[J]. 计算机科学, 2020, 47(6A): 247-249.
[6] 曹义亲, 段也钰, 武丹. 基于WFSOA的2D-Otsu钢轨缺陷图像分割方法[J]. 计算机科学, 2020, 47(5): 154-160.
[7] 张新明, 李双倩, 刘艳, 毛文涛, 刘尚旺, 刘国奇. 信息共享模型和组外贪心策略的郊狼优化算法[J]. 计算机科学, 2020, 47(5): 217-224.
[8] 黄光球, 陆秋琴. 垂直结构群落系统优化算法[J]. 计算机科学, 2020, 47(4): 194-203.
[9] 饶梦,苗夺谦,罗晟. 一种粗糙不确定的图像分割方法[J]. 计算机科学, 2020, 47(2): 72-75.
[10] 雷涛,连倩,加小红,刘鹏. 基于快速SLIC的图像超像素算法[J]. 计算机科学, 2020, 47(2): 143-149.
[11] 黄光球,陆秋琴. 保护区种群迁移动力学优化算法[J]. 计算机科学, 2020, 47(2): 186-194.
[12] 魏霖静, 宁璐璐, 郭斌, 侯振兴, 甘诗润. 基于混合蛙跳算法的K-mediods聚类挖掘与并行优化[J]. 计算机科学, 2020, 47(10): 126-129.
[13] 周岳勇,程江华,刘通,王洋,陈明辉. 高分辨率SAR图像道路提取综述[J]. 计算机科学, 2020, 47(1): 124-135.
[14] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学, 2019, 46(9): 36-46.
[15] 刘长齐, 邵堃, 霍星, 范冬阳, 檀结庆. 基于加权质量评价函数的K-means图像分割算法[J]. 计算机科学, 2019, 46(6A): 158-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .