计算机科学 ›› 2019, Vol. 46 ›› Issue (5): 279-285.doi: 10.11896/j.issn.1002-137X.2019.05.043

所属专题: 医学图像

• 图形图像与模式识别 • 上一篇    下一篇

基于CNN的相衬显微图像序列的癌细胞多目标跟踪

胡海根1, 周莉莉1, 周乾伟1, 陈胜勇1,2, 张俊康1   

  1. (浙江工业大学计算机科学与技术学院 杭州310024)1
    (天津理工大学计算机科学与工程学院 天津300384)2
  • 发布日期:2019-05-15
  • 作者简介:胡海根(1977-),男,博士,副教授,CCF会员,主要研究方向为深度学习、计算机视觉、进化计算以及温室环境智能化控制等,E-mail:hghu@zjut.edu.cn(通信作者);周莉莉(1994-),女,硕士生,主要研究方向为深度学习,E-mail:2352535359@qq.com;周乾伟(1986-),男,博士,主要研究方向为深度学习、信号处理及优化;陈胜勇(1973-),男,博士,教授,博士生导师,主要研究方向为计算机视觉;张俊康(1993-),男,硕士,主要研究方向为深度学习。
  • 基金资助:
    浙江省自然科学基金(LY18F030025),国家自然科学基金(61802347,U1509207,31640053),中国微系统技术重点实验室基金(6142804010203)资助。

Multi-target Tracking of Cancer Cells under Phase Contrast Microscopic Images Based
on Convolutional Neural Network

HU Hai-gen1, ZHOU Li-li1, ZHOU Qian-wei1, CHEN Sheng-yong1,2, ZHANG Jun-kang1   

  1. (College of Computer Science & Technology,Zhejiang University of Technology,Hangzhou 310024,China)1
    (School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China)2
  • Published:2019-05-15

摘要: 检测与跟踪相衬显微图像序列下的癌细胞对于分析癌细胞的生命周期以及开发抗癌新药具有非常重要的意义。传统的目标跟踪方法大多应用于刚性目标跟踪或单目标跟踪,而癌细胞是非刚性且不断裂变的多目标,这就大大增加了跟踪的难度。文中以相衬显微图像序列中的膀胱癌细胞为研究对象,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的癌细胞多目标跟踪方法。该算法采用基于检测的多目标跟踪方法,首先利用深度学习检测框架Faster R-CNN卷积神经网络实现癌细胞的检测,初步获得待跟踪的癌细胞;再利用扫描圆算法(Circle Scanning Algorithm,CSA)实现黏连细胞的检测优化,进一步提高黏连区域的细胞检测精度;最后提取综合特征描述子,对卷积特征、尺寸特征和位置特征进行加权求和,实现跟踪目标的综合描述,从而实现不同帧癌细胞间的高效关联匹配,最终实现癌细胞的多目标跟踪。一系列实验结果表明,相较于传统方法,所提方法不仅在癌细胞的检测和跟踪上性能有较大的提升,而且可以有效处理目标的遮挡问题。

关键词: FasterR-CNN, 多目标跟踪, 卷积神经网络, 扫描圆算法, 细胞检测

Abstract: Detecting and tracking cancer cells under phase contrast microscopic images plays a critical role for analyzing the life cycle of cancer cells and developing new anti-cancer drugs.Traditional target tracking methods are mostly applied to rigid target tracking or single target tracking,while cancer cells are non-rigid multiple targets with constant fission,and it makes tracking more challenging.Taking bladder cancer cells in the sequence of phase contrast micrographs images as research object,this paper proposed a multi-target tracking method of cancer cells based on convolutional neural network.Firstly,through making use of detection-based multi-target method,the proposed algorithm adopted the deep learning detection framework Faster R-CNN to detect the bladder cancer cells and preliminarily obtain the cancer cells to be tracked.Then CSA (circle scanning algorithm) was utilized to further optimize the detection of adhesion cancer cells,and further improve the detection accuracy of cells in adhesion area.Finally,it integrated the features of convolution,size and position into a synthetic feature descriptor by using weighting methods,thus tracking multiple cancer cells by achieving the efficient correlation and matching of different frames of cancer cells.The results of a series of experiments show that this method can not only improve the accuracy of detecting and tracking cancer cell,but also deal with the occlusion problem effectively.

Key words: Cell detection, Circle scanning algorithm, Convolutional neural network, Faster R-CNN, Multi-target tracking

中图分类号: 

  • TP183
[1]MÖLLER M,BURGER M,DIETERICH P,et al.A framework for automated cell tracking in phase contrast microscopic videos based on normal velocities[J].Journal of Visual Communication &Image Representation,2012,25(2):396-409.
[2]LI H,LI Y,PORIKLI F.Robust Online Visual Tracking with a Single Convolutional Neural Network [M]∥Computer Vision -- ACCV 2014.Springer International Publishing,2014:194-209.
[3]WANG N,YEUNG D Y.Learning a deep compact image representation for visual tracking [C]∥International Conference onNeural Information Processing Systems.2013:809-817.
[4]HU H G,LUO C,GUAN Q,et al.A fast online multivariableidentification method for greenhouse environment control problems [J].Neurocomputing,2018,312:63-73.
[5]GIRSHICK R,DONAHUE J,DARRELL T,et al.Region-Based Convolutional Networks for Accurate Object Detection and Segmentation [J].IEEE Trans Pattern Anal Mach Intell,2016,38(1):142-158.
[6]OPELT A,FUSSENEGGER M,PINZ A,et al.Weak Hypotheses and Boosting for Generic Object Detection and Recognition[C]∥European Conference on Computer Vision.Springer Berlin Heidelberg,2004:71-84.
[7]DING S,LIU Z,LI C.AdaBoost learning for fabric defect detection based on HOG and SVM[C]∥International Conference on Multimedia Technology.IEEE,2011:2903-2906.
[8]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNetclassification with deep convolutional neural networks [J].Advances in Neural Information Processing Systems,2012,25(2):1097-1105.
[9]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,1:91-99.
[10]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[11]GIRSHICK R.Fast r-cnn[C]∥Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448.
[12]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection[J].Computer Scie-nce,2016:779-788.
[13]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[C]∥European Conference on Computer Vision.Springer International Publishing,2016:21-37.
[14]UIJLINGS J R R,SANDE K E A V D,GEVERS T,et al.Selective Search for Object Recognition [J].International Journal of Computer Vision,2013,104(2):154-171.
[15]HU H G,GUAN Q,CHEN S Y,et al.Detection and Recognition for Life State of Cell Cancer Using Two-Stage Cascade CNNs [J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017:1.
[16]CHU H,WANG K.Target tracking based on mean shift andimproved kalman filtering algorithm[C]∥IEEE International Conference on Automation and Logistics.IEEE,2009:808-812.
[17]MA L,CHANG F L,QIAO Y Z.Target tracking based on mean shift algorithm and particle filtering algorithm [J].Pattern Re-cognition & Artificial Intelligence,2006,19(6):787-793.
[18]KALAL Z,MIKOLAJCZYK K,MATAS J.Tracking-learning-detection [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[19]JIANG L H,GAN Z H,JIANG M.Review of Multi-Target Tracking[J].Computer Systems & Applications,2010,19(12):271-275.
[20]LAURITSCH G,DENNERLEIN F.Method for reconstructing a CT image using an algorithm for a short-scan circle combined with various lines:US,US 7359477 B2[P].2008.
[21]TAKALA V,PIETIKAINEN M.Multi-Object Tracking Using Color,Texture and Motion[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.DBLP,2007:1-7.
[22]WANG L,WANG J,CHEN D,et al.An Algorithm of Target Tracking and Detecting Synchronously Based on Inter-Frame Dual Match [C]∥2009 Symposium on Photonics and Optoelectronics,2009:1-4.
[23]CHEN L,ZHAO Z,YAN H.A Probabilistic Relaxation Labeling (PRL) Based Method for C.elegans Cell Tracking in Microscopic Image Sequences [J].IEEE Journal of Selected Topics in Signal Processing,2016,10(1):185-192.
[24]CHOI W.Near-online multi-target tracking with aggregated local flow descriptor[C]∥Proceedings of the IEEE International Conference on Computer Vision.2015:3029-3037.
[25]MEMISEVIC R,ZACH C,HINTON G,et al.Gated Softmaxclassification[C]∥International Conference on Neural Information Processing Systems.Curran Associates Inc.2010:1603-1611.
[26]TAN Y.Study on applied technology arithmetic of imagethreshold segmentation [J].Microcomputer Information,2007,23(24):298-300.
[27]SIMONYAN K,ZISSERMAN A.Very Deep ConvolutionalNetworks for Large-Scale Image Recognition [J].Computer Scien-ce,arXiv:1409.1556.
[28]ZEILER M D,FERGUS R.Visualizing and understanding con-volutional networks[C]∥European Conference on Computer Vision.Springer International Publishing,2014:818-833.
[29]LARKIN J,GUNTHER B,HOLIERHOEK H.NMS withmulti-server change requests processing:US,US 8028052 B2[P].2011.
[30]WU Y,LIM J,YANG M H.Object Tracking Benchmark [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(9):1834-1848.
[31]BERNARDIN K,STIEFELHAGEN R.Evaluating multiple object tracking performance:the CLEAR MOT metrics [J].Eu-rasip Journal on Image & Video Processing,2008,2008(1):246309.
[32]张剑华,刘儒瑜,邹祎杰.显微图像序列中癌细胞轨迹追踪与关联[OL].http://www.paper.edu.cn/releasepaper/content/201704-582.
[33]JU H Y,YANG M H,LIM J,et al.Bayesian Multi-objectTracking Using Motion Context from Multiple Objects[C]∥IEEE Winter Conference on Applications of Computer Vision.IEEE Computer Society,2015:33-40.
[34]FAZLI S,POUR H M,BOUZARI H.Multiple object tracking using improved GMM-based motion segmentation[C]∥International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology,Ecti-Con.IEEE,2009:1130-1133.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 沈祥培, 丁彦蕊.
多检测器融合的深度相关滤波视频多目标跟踪算法
Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm
计算机科学, 2022, 49(8): 184-190. https://doi.org/10.11896/jsjkx.210600004
[6] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[7] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[8] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[9] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[10] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[11] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[12] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[13] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
[14] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[15] 王杉, 徐楚怡, 师春香, 张瑛.
基于CNN-LSTM的卫星云图云分类方法研究
Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM
计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!