计算机科学 ›› 2019, Vol. 46 ›› Issue (8): 127-132.doi: 10.11896/j.issn.1002-137X.2019.08.021

• 网络与通信 • 上一篇    下一篇

基于绿色能源感知的效用函数异构网络接入算法

方旭愿, 田红心, 孙德春, 杜文丛, 祁婷   

  1. (西安电子科技大学综合业务网理论及关键技术国家重点实验室 西安710071)
  • 收稿日期:2018-07-30 出版日期:2019-08-15 发布日期:2019-08-15
  • 通讯作者: 田红心(1968-),男,硕士,副教授,主要研究方向为无线通信、卫星通信、通信信号处理,E-mail:hxtian@mail.xidian.edu.cn
  • 作者简介:方旭愿(1995-),女,硕士生,主要研究方向为异构网络、无线通信,E-mail:18792990279@163.com;孙德春(1982-),男,博士,副教授,主要研究方向为通信信号处理、无线通信、卫星通信;杜文丛(1994-),女,硕士生,主要研究方向为异构网络、协作通信;祁婷(1982-),女,硕士生,主要研究方向为空间调制
  • 基金资助:
    国家自然科学基金(61301170),中央高校基本科研业务费项目(JB150109),111项目(B08038)

Utility Function Heterogeneous Network Access Algorithm Based on Green Energy Perception

FANG Xu-yuan, TIAN Hong-xin, SUN De-chun, DU Wen-cong, QI Ting   

  1. (State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an 710071,China)
  • Received:2018-07-30 Online:2019-08-15 Published:2019-08-15

摘要: 在5 G移动通信网络中,大量采用绿色和电网能源混合供电的通信基站可以显著降低运营成本。针对异构网络混合能源供电基站的用户接入问题,文中提出了基于绿色能源感知的综合效用函数接入算法(Green Energy Perception Comprehensive utility function,GEPC)和结合调节的综合效用函数接入算法(Green Energy Perception based Comprehensive unility function Adjustment algorithm,GEPCA)。用户首先根据基站的绿色能源状况、接入信噪比等接入选择参数加权计算出效用值,选择效用值最小的基站接入,用户接入基站后,通过基站对接入用户进行调节来实现降低总能耗费用的效果。MATLAB仿真表明:GEPC算法在低负载时相比于RSRP (基于用户接收信号强度)、SINR(基于用户最大信干噪比)算法可以更有效地降低总能量消耗费用;在高负载时GEPCA算法和NEAT(绿色能源用户感知接入)算法相比显著提高了绿色能源的利用率,使之达到90%,同时有利于实现异构网络的负载均衡。

关键词: 绿色能源, 能耗费用, 异构网络, 用户接入

Abstract: In the 5G mobile communication network,a large number of communication base stations using green and grid energy mixed power supply can reduce operating costs significantly.Aiming at the problem of user access of base stations supplied by hybrid energy in heterogeneous networks,a comprehensive utility function access algorithm based on green energy perception and a green energy perception based comprehensive utility function adjustment algorithm were proposed.The user first calculates the utility value according to the green energy status of the base station,the access signal-to-noise ratio and other access selection parameters,and selects the base station with the smallest utility va-lue to access.After the user accesses the base station,the algorithm adjusts the access user through the base station to reduce the cost of energy costs.By using MATLAB platform,simulation results show that the GEPC algorithm can reduce the total energy consumption cost more effectively at low load compared to RSRP (based on user received signal power)and SINR (based on user maximum signal to interference and noise ratio) algorithm.Compared with the NEAT (Green Energy User Awareness Access) algorithm,the GEPCA algorithm significantly improves the utilization of green energy to 90% and is beneficial to heterogeneous network load balancing at high load

Key words: Energy cost, Green energy, Heterogeneous network, User access

中图分类号: 

  • TN915.6
[1]HAN T,ANSARI N.On optimizing green energy utilization for cellular networks with hybrid energy supplies[J].IEEE Tran-sactions on Wireless Communications,2013,12(8):3872-3882.
[2]WANG B,KONG Q,LIU W,et al.On efficient utilization of green energy in heterogeneous cellular networks[J].IEEE Systems Journal,2017,11(2):846-857.
[3]WANG B,KONG Q,YANG L T.Context-aware user association for energy cost saving in a green heterogeneous network with hybrid energy supplies[J].Mobile Networks and Applications,2015,20(6):802-816.
[4]WANG B,YANG Q,YANG L T,et al.On minimizing energy consumption cost in green heterogeneous wireless networks[J].Computer Networks,2017,129:522-535.
[5]FAN Q,ANSARI N.Green energy aware user association in heterogeneous networks[C]∥Wireless Communications and Networking Conference (WCNC).IEEE,2016:1-6.
[6]CORROY S,FALCONETTI L,MATHAR R.Dynamic cell association for downlink sum rate maximization in multi-cell hete-rogeneous networks[C]∥Proceedings of IEEE International Conference on Communications (ICC’12).Ottawa,Canada,2012.
[7]SHUMINOSKI T,GAVRILOVSKA L,JANEVSKI T.QoS Er- formances of eterogeneous 1etworkswith 0ultiple Radio Access Technologies[J].IEEE EUROCON,2017,6:132-137.
[8]LUN T,WEILI W,YANG W,et al.An Energy-Saving Algorithm With Joint User Association,Clustering,and On/Off Strategies in Dense Heterogeneous Networks[J].IEEE Access,2017,5:12988-12300.
[9]GAO X E,LI K Q.Research on heterogeneous network access selection algorithm based on improved multiple attribute[J].Computer Science,2017,44(6):97-101.(in Chinese) 高秀娥,李克秋.基于改进多属性判决的异构网络接入选择算法[J].计算机科学,2017,44(6):97-101.
[10]TSG-RAN G.Further advancements for E-UTRA physical layer aspects 3G TR36.814 v9.0.0[R].New York,USA:3GPP,2010.
[11]WU K.Resource Management of 5G Mobile Communication Network Based on the Energy Efficiency[D].Chengdu:University of Electronic Science and Technology of China,2016.(in Chinese) 吴坤.5G移动通信网络基于能效的资源管理[D].成都:电子科技大学,2016.
[12]OMHENI N,ZARAI F,OBAIDAT M S,et al.A MIH-based approach for best network selection in heterogeneous wireless networks[J].Journal of Systems & Software,2014,92(1):143-156.
[13]LUO Y J.Research on Heterogeneous Network Access Selection Scheme[D].Chengdu:Southwest Jiaotong University,2016.(in Chinese) 罗玉娇.异构网络接入选择方案研究[D].成都:西南交通大学,2016.
[14]PAHLAVAN K,KRISHNAMURTHY P,HATAMI A,et al.Handoff in hybrid mobile data networks[J].IEEE Personal Communications,2000,7(2):34-47.
[1] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[2] 蒲实, 赵卫东.
一种面向动态科研网络的社区检测算法
Community Detection Algorithm for Dynamic Academic Network
计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023
[3] 程云飞, 田红心, 刘祖军.
NOMA系统异构网络中联合用户关联和功率控制协同优化
Collaborative Optimization of Joint User Association and Power Control in NOMA Heterogeneous Network
计算机科学, 2021, 48(3): 269-274. https://doi.org/10.11896/jsjkx.191100213
[4] 肖勇, 金鑫, 冯俊豪.
一种适用于电力异构通信的链路速率跨层匹配机制
Cross-layer Matching Mechanism of Link Communication Rate for Heterogeneous Communication in Power System
计算机科学, 2021, 48(11A): 495-499. https://doi.org/10.11896/jsjkx.200500113
[5] 曾德泽, 李跃鹏, 赵宇阳, 顾琳.
基于强化学习的高能效基站动态调度方法
Reinforcement Learning Based Dynamic Basestation Orchestration for High Energy Efficiency
计算机科学, 2021, 48(11): 363-371. https://doi.org/10.11896/jsjkx.201000008
[6] 张建安.
基于移动切换认证的分层异构网络中的用户敏感信息隐藏方法
Users’ Sensitive Information Hiding Method in Hierarchical Heterogeneous Network Based on Mobile Switching Authentication
计算机科学, 2019, 46(3): 217-220. https://doi.org/10.11896/j.issn.1002-137X.2019.03.032
[7] 张绘娟, 张达敏, 闫威, 陈忠云, 辛梓芸.
异构网络中基于吞吐量优化的资源分配机制
Throughput Optimization Based Resource Allocation Mechanism in Heterogeneous Networks
计算机科学, 2019, 46(10): 109-115. https://doi.org/10.11896/jsjkx.180901787
[8] 庄陵,尹耀虎.
认知异构网络中基于不完全频谱感知的资源分配算法
Resource Allocation Algorithm for Cognitive Heterogeneous Networks Based on Imperfect Spectrum Sensing
计算机科学, 2018, 45(5): 49-53. https://doi.org/10.11896/j.issn.1002-137X.2018.05.008
[9] 王振朝,侯欢欢,连蕊.
抑制CMT中乱序程度的路径优化方案
Path Optimization Scheme for Restraining Degree of Disorder in CMT
计算机科学, 2018, 45(4): 122-125. https://doi.org/10.11896/j.issn.1002-137X.2018.04.019
[10] 高秀娥,李克秋.
基于改进多属性判决的异构网络接入选择算法
Research on Heterogeneous Network Access Selection Algorithm Based on Improved Multiple Attribute
计算机科学, 2017, 44(6): 97-101. https://doi.org/10.11896/j.issn.1002-137X.2017.06.017
[11] 吴卫祖,刘利群,谢冬青.
基于神经网络的异构网络向量化表示方法
Vectorized Representation of Heterogeneous Network Based on Neural Networks
计算机科学, 2017, 44(5): 272-275. https://doi.org/10.11896/j.issn.1002-137X.2017.05.049
[12] 张彩霞,王向东.
可穿戴医疗设备的安全方法研究
Research on Safety Method of Wearable Medical Devices
计算机科学, 2016, 43(Z6): 365-369. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.087
[13] 朱文红,任海军,吴良俊,吕琳洁,王博.
异构网络多网共存环境中网络资源分配技术的研究
Research of Network Resource Allocation Technology in Heterogeneous Multinetwork Environment
计算机科学, 2016, 43(Z6): 310-313. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.074
[14] 王振朝,杨小龙.
异构网络中基于MPTCP的协作拥塞控制方案
Cooperative Congestion Control Scheme Based on MPTCP in Heterogeneous Network
计算机科学, 2016, 43(6): 97-101. https://doi.org/10.11896/j.issn.1002-137X.2016.06.020
[15] 彭浩,赵丹丹,于运杰,吴震东,吴松洋.
一种面向分布式异构网络的基于可信计算的信任模型
Trust Model Based on Trusted Computing for Distributed Heterogeneous Networks
计算机科学, 2016, 43(10): 66-69. https://doi.org/10.11896/j.issn.1002-137X.2016.10.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!