无线传感器网络中基于蚁群算法的能量空洞规避策略

李斌 王镇 刘学军

(南京工业大学电子与信息工程学院 南京 210009)

摘 要 无线传感器网络(WSN)具有特殊的能量空洞(Energy Hole)现象,蚁群算法的随机自适应性使其很适合应用 于无线传感器网络环境,所以在缓解能量空洞有效性分析的基础上,提出了一种基于蚁群算法的局部区域能量空洞规 避策略,通过蚁群算法的自适应性实现了无线传感器网络运行过程中能量空洞规避,搜索出一条最优路径。仿真实验 表明,该算法能够有效地延长网络的生命周期。

关键词 蚁群算法,能量空洞,能量空洞规避策略,无线传感器网络

中图法分类号 TP393 文献标识码 A

Strategies of Energy Hole Avoiding for Wireless Sensor Networks Based on Ant Colony Algorithm

LI Bin WANG Zhen LIU Xue-jun

(College of Electronics and Information Engineering, Nanjing University of Technology, Nanjing 210009, China)

Abstract Wireless sensor network(WSN) has a special energy hole phenomenon, and random self-adaptive ant colony algorithm makes the algorithm very suitable to wireless sensor network environment. So based on the analysis of the effectiveness of some existing approaches towards mitigating the energy hole problem, this paper presented a strategy of avoiding the energy hole of local area based on ant colony algorithm, to avoid energy hole by using the self-adaptive ant colony algorithm, and finally search a optimal path. Simulation result shows that the algorithm can maximize the network lifetime.

Keywords Ant colony algorithm, Energy hole, Strategies of avoiding energy hole, Wireless sensor network

1 引言

近年来,随着传感器技术、嵌入式技术以及低功耗无线通 信技术的发展,无线传感器网络成为研究的热点,广泛应用于 军事、交通、医疗、灾难救援等领域。

通常,传感器网络与外界的接口是一个 sink 或者多个 sink 节点,无线传感器网络以数据为中心的模式导致 sink 周 围的节点需要承担更多的通信负载,从而导致 sink 周围的节 点能量消耗过快,这种现象被称为在 sink 周围的"能量 洞"^[1]。无线传感器网络具有特殊的能量空洞(energy hole) 现象:由于无线传感器网络通常采用多跳的方式将数据转发 到汇聚节点,数据流遵循多对一的模式,离汇聚节点较近的节 点不但要发送自身的采集数据,还要承担外部节点的数据转 发任务,能量消耗速度较快,最终会导致汇聚节点周围的节点 过早耗尽自身能量,形成一块没有传感器节点覆盖的区域,导 致这一区域无节点监测,从而形成监测的空白区域,同时由这 一区域负责向前转发的数据也将无法继续向前中继而导致路 由断路现象,这即是所谓的能量空洞现象^[24]。文献[5]中的 实验结果表明,当一个传感器网络生命结束后,总的节点能量 剩余超过 90%。

2 相关工作

2.1 空洞边界探测

在解决无线传感器网络能量空洞的过程中,首先对能量 空洞进行探测,精确地确定空洞的方位和大小,为解决空洞问 题提供条件。文献[6]提出了传感器网络中满足覆盖性能的 概率判定方法。文献[7-10]提出了采用计算几何中的 Voronoi 图和 Delaunary 三角形原理实现能量空洞探测的方 法。Rao^[11]提出了采用虚拟坐标的方式实现空洞边界的测 定。此外,Gao^[12]首次提出了在没有地理位置信息的条件下 实现对空洞边缘的确定方法,并在不同的空洞形状条件下实 现空洞边缘节点的确定。Li^[13]等人提出了传感器网络中的 一种基于节点连通度的空洞探测方法,该方法基于节点连通 度的假设,实现了分布式的覆盖空度探测。该方法基于 3mesh 覆盖环的空洞边缘检测,简单高效,但是对于某些特殊 形状的空洞,无法实现 100%的空洞边缘判定。

2.2 空洞问题研究

Olariu和 Stojmenovic^[1]首先给出了关于能否避免能量 空洞问题的理论成果。作者假定一个圆形网络中的节点均匀 分布,节点持续向 Sink 汇报收集到的数据,并假设网络中节

到稿日期:2012-10-28 返修日期:2013-01-07 本文受国家自然科学基金(61073197),江苏省科技支撑计划(SBE201077457),国家质检公益 性科研专项(201110025)资助。

李 斌(1978-),男,硕士,讲师,主要研究方向为神经网络及传感器技术,E-mail,libean@139.com;**王 镇**(1985-),男,硕士,主要研究方向为 传感器网络;刘学军(1970-),男,博士,教授,主要研究方向为数据库、传感器网络等。

• 66 •

点的发射半径可调,得到的结论是:如果网络中被划分的圆环 等宽,路由上的能耗能够降到最低,但是此时网络中可能会出 现能量空洞。

Ashraf Hossain^[14]在部署网络时,让Sink节点附近节点 间的间隔较小,则节点所需发射功率较小,而远离Sink的节 点间隔较大,所需发射功率大,以达到网络节点的能量消耗均 衡。

曾志文^[15]等通过分析无线传感器网络的数据分发特征, 在得到传感器网络的能耗分布情况、不同区域节点的寿命以 及数据延迟参数的基础上,在保证应用延迟需求的前提下,提 出了基于可调发射功率的能量空洞避免算法,该算法在可能 形成能量空洞的区域选择一定比例的数据,以较短的发射半 径将其发送到能量消耗低的区域,以延长网络寿命。

刘安丰、陈志刚^[16]等从理论上分析了分簇网络不同簇半 径下的能量消耗情况,然后给出了分簇网络簇半径的优化取 值情况,在此基础上,提出了一种不等簇半径轮换工作的能量 空洞避免策略,该策略的综合能量消耗比采用最优的固定簇 半径的能量消耗少,从而可有效地提高网络寿命,延长网络生 命周期。

Jarry 和 Leone 等人在文献[17]中提出了一种混合式策略,用于平衡各区域的能量消耗以延长网络寿命,即通过算法 分配环内一部分节点直接发送数据到 sink,而另一部分节点 则通过多跳的方式传递到 sink,两部分比例是根据算法调节 的。这样做存在两方面的不足,一方面是作者提出的算法仅 用于所有传感器都能直接传递数据到 Sink 的情况,即任何一 个传感器到 sink 的距离均小于其最大传输距离,对于网络寿 命区域半径大于传感器最大传输距离的情况就不适合了;另 一方面,平衡了各区域的能量消耗的网络寿命不一定就是最 长的。

宋超^[18]等运用蚁群算法去解决能量空洞问题,提出了一种基于蚁群优化的分布式算法(AASTRL),该算法在各区域 根据节点分布情况自适应地探索近似最优的传输距离,通过 寻找到各环最优的传输距离序列来延长网络的生存时间。

与上述工作不同,本文提出了一种基于蚁群算法的局部 区域能量空洞规避策略,即无线传感器网络运行一段时间,传 感器网络局部产生能量空洞后,通过蚁群算法的自适应性规 避路径前方的能量空洞,搜索出一条最优路径来最大限度地 延长网络的生命周期。

为了能够有效地规避传感器网络局部区域产生的能量空 洞,本文的主要工作如下:(1)建立传感器节点的能量消耗模 型,分析了网络中不同节点密度、数据采集率、多跳对缓解局 部能量空洞问题的有效性。(2)在缓解局部能量空洞有效性 分析的基础上,提出了一种基于蚁群算法的局部能量空洞规 避策略,即无线传感器网络运行一段时间,在局部区域产生能 量空洞后,通过蚁群算法的自适应性规避路径前方的能量空 洞,搜索出一条最优路径来最大限度地延长网络的生命周期。

3 缓解能量空洞策略有效性分析

3.1 能耗模型

网络中传感器节点的有效能量消耗包括传感器节点的感 知能耗、处理能耗、接收能耗、发送能耗。由于传感器网络的 能量消耗主要是由数据传输引起的,因此能量模型仅考虑传 输数据的能耗和接受数据的能耗。我们使用如下能量消耗模 型:

$$E_{tx} = \beta_1 + \beta_2 d^a \tag{1}$$

$$E_{rx} = \beta_3 \tag{2}$$

式中, E_{α} 为传输单位数量数据的能量消耗, E_{α} 为接收单位数 量数据的能量消耗, β_{λ} , β_{λ} 和 β_{λ} 是正常数,d是数据的传输距 离,2 $\leq \alpha \leq 6$ 。根据文献[19], $\beta_{1} = 45 \times 10^{-9}$ J/bit, $\beta_{2} = 10 \times 10^{-12}$ J/bit/m²(当 $\alpha = 2$), $\beta_{2} = 0.001 \times 10^{-12}$ J/bit/m⁴(当 $\alpha = 4$), $\beta_{3} = 135 \times 10^{-9}$ J/bit。

3.2 能量空洞模型

本文假设所有传感器节点均匀分布在一个半径为 R 的 圆形区域,Sink 被布置在网络的中心。网络被 n 个中心圆分 割成若干环形区域,中心圆的半径分别为 $r_1, r_2, r_3, ..., r_n$,且 满足 $0 < r_1 < r_2 < r_3 < ... < r_n = R$,特别地 $r_0 = 0$ 。当 1 < i < n时,任意圆环 C_i 都是由半径为 R_{i-1} 和 R_i 的两个同心圆所分 隔的环形区域。假设圆环 C_i 中的传感器节点采用传输距离 $r_i = r_{i-1}$ 将数据传递给 C_{i-1} 中的传感器节点。每个节点收集 它感应范围内的数据并向 Sink 传送。假设网络规模很大,数 据的传递需要多跳才能完成。环 C_i 内的节点不仅需要传递 它自身产生的数据,还要传递 C_{i-1} 到 C_i 的数据。圆环 C_i (1< i < n)的节点密度、节点数、节点数据采集速率依次记为 ρ_i 、 N_i, b_i 。圆环的最大宽度是传感器节点的最大传输半径 t_x ,圆 环的宽度为 r,节点发送和接收单位字节所需的时间为 t,节 点的初始能量记为 E_i 网络结构如图 1 所示。

图 1 网络模型

假设每个传感器节点单位时间产生 b 个单位数据,圆环 C_i中的传感器节点采用传输距离 $r_i - r_{i-1}$ 将数据传递给 C_{i-1} 中的传感器节点,环 C_i内节点数量 N_i为 $\rho_i \pi (r_i^2 - r_{i-1}^2)$,接收的数据量是 $\rho_i \pi b (r_n^2 - r_i^2)$,需要传输的数据量是 $\rho_i \pi b (r_n^2 - r_{i-1}^2)$,若总能耗是 E_{itotal} ,每个节点的平均能量消耗是 E_i ,则 有:

$$E_{itotal} = \rho_i \pi b (r_n^2 - r_{i-1}^2) (\beta_1 + \beta_2 r_1^2) + \rho_i \pi b (r_n^2 - r_i^2) \beta_3$$

= $\rho_i \pi b r_1^2 (n^2 - i^2 + 2i - 1) (\beta_1 + \beta_2 r_1^2) + \rho_i \pi b r_1^2 (n^2 - i^2) \beta_3$
(3)

$$E_{i} = \frac{E_{itotal}}{\rho_{i} \pi(r_{i}^{2} - r_{i-1}^{2})}$$

= $\frac{\rho_{i} \pi b r_{1}^{2} (n^{2} - i^{2} + 2i - 1) (\beta_{1} + \beta_{2} r_{1}^{2}) + \rho_{i} \pi b r_{1}^{2} (n^{2} - i^{2}) \beta_{3}}{\rho_{i} \pi r_{1}^{2} (2i - 1)}$
= $b \frac{(n^{2} - i^{2} + 2i - 1) (\beta_{1} + \beta_{2} r_{1}^{2}) + (n^{2} - i^{2}) \beta_{3}}{2i - 1}$ (4)

定义1 圆环 C_i 的能耗速率 V_i 为圆环 C_i 内节点单位时间内的平均能耗,计算公式如下:

$$V_{i} = E_{i} = b \frac{(n^{2} - i^{2} + 2i - 1)(\beta_{i} + \beta_{2}r_{1}^{2}) + (n^{2} - i^{2})\beta_{3}}{(2i - 1)}$$
(5)

3.3 缓解能量空洞策略有效性分析

假设无线传感器网络通常工作初始条件如下:1)各个圆 环的节点密度均相等,为ρ;2)各圆环内节点的数据采集速率 相等均为 b;3)圆环 C_i 和圆环 C_{i-1}的节点间采用单跳方式传 输数据。

定理1 在初始工作条件下圆环 *C*_i 越靠近 Sink 节点,其 对应的能耗速率 *V*_i 就越大,所以 *C*_i 内的节点将最早耗尽能 量,在局部产生能量空洞现象。

证明:根据文中提出的能量空洞分析模型,以及圆环 C_i 的能耗速率 V_i 可得:

$$\frac{V_{i}}{V_{1}} = \frac{E_{i}}{E_{1}} = \frac{\left[(n^{2} - (i-1)^{2})(\beta_{1} + \beta_{2} r_{1}^{2}) + (n^{2} - i^{2})\beta_{3} \right]}{\left[(2i-1)(n^{2}\beta_{1} + n^{2}\beta_{2} r_{1}^{2} + (n^{2} - 1)\beta_{3}) \right]}$$
(6)

其中, $N_i = \rho_i \pi (r_i^2 - r_{i-1}^2), N_1 = \rho \pi r_1^2$,由此得到:

$$\frac{n^2 - i^2}{n^2(2i-1)} \leqslant \frac{E_i}{E_1} \leqslant \frac{n^2 - (i-1)^2}{(2i-1)(n^2 - 1)}$$
(7)

最大环数 *n* 分别取 10、20 和 30,根据式(7)得到 *E_i/E₁* 值的范围,如表 1 所列。

从表1可以看出,环 C₁ 节点的能耗远远大于其它环的能 量消耗,它们能量的耗尽是能量空洞形成的主要原因,而且, 最大环数的改变并不影响上述规律。式中,*i*∈[2,*n*]。由此

$$\begin{aligned} V_{n} - V_{i} &= b \Big[(\beta_{1} + \beta_{2} r_{1}^{*}) - \frac{\lfloor (n^{2} - i^{2} + 2i - 1)(\beta_{1} + \beta_{2} r_{1}^{*}) + (n^{2} - i^{2})\beta_{3} \rfloor}{(2i - 1)} \Big] \\ &= b \Big[(\beta_{1} + \beta_{2} r_{1}^{*}) - \frac{\lfloor (n^{2} - i^{2} + 2i - 1)(\beta_{1} + \beta_{2} r_{1}^{*}) + (n^{2} - i^{2})\beta_{3} \rfloor}{(2i - 1)} \Big] \\ &= b \Big[\frac{(\beta_{1} + \beta_{2} r_{1}^{*})(2i - 1) - \lfloor (n^{2} - i^{2} + 2i - 1)(\beta_{1} + \beta_{2} r_{1}^{*}) + (n^{2} - i^{2})\beta_{3} \rfloor}{(2i - 1)} \Big] \\ &= b \Big[\frac{-(n^{2} - i^{2})(\beta_{1} + \beta_{2} r_{1}^{*} + \beta_{3})}{(2i - 1)} \Big] \end{aligned}$$

因为 $-(n^2-i^2) < 0$,所以:

$$V_{n} - V_{i} < 0$$

式中,*i* < [1,*n*-1]。式(10)表明最外环能耗速率总是小于内 环的能耗速率,也就是说传感器网络局部产生能量空洞的问 题无法通过调整各圆环的节点密度来避免。

3.3.2 数据采集速率

定理3 依靠调整圆环内节点的数据采集速率无法避免

$$V_{n}-V_{i} = b_{n}(\beta_{1}+\beta_{2}r_{1}^{n})-b_{i}\frac{(n^{2}-i^{2}+2i-1)(\beta_{1}+\beta_{2}r_{1}^{n})+(n^{2}-i^{2})\beta_{3}}{(2i-1)}$$

$$= b_{n}\frac{(\beta_{1}+\beta_{2}r_{1}^{n})(2i-1)}{(2i-1)}-b_{i}\frac{(n^{2}-i^{2}+2i-1)(\beta_{1}+\beta_{2}r_{1}^{n})+(n^{2}-i^{2})\beta_{3}}{(2i-1)}$$

$$= \frac{b_{n}(\beta_{1}+\beta_{2}r_{1}^{n})(2i-1)-b_{i}(\beta_{1}+\beta_{2}r_{1}^{n})(2i-1)-b_{i}(\beta_{3}+\beta_{1}+\beta_{2}r_{1}^{n})(n^{2}-i^{2})}{(2i-1)}$$

$$= \frac{(b_{n}-b_{i})(\beta_{1}+\beta_{2}r_{1}^{n})(2i-1)-b_{i}(\beta_{3}+\beta_{1}+\beta_{2}r_{1}^{n})(n^{2}-i^{2})}{(2i-1)}$$

(10)

式中, $i \in [1, n-1]$,由于实际传感器网络中环 C_i 和 C_n 的数 据采集率 b_i 和 b_n 相差不大,因此由式(11)得:

$$V_n - V_i < \frac{-b_i (\beta_3 + \beta_1 + \beta_2 r_1^2) (n^2 - i^2)}{(2i - 1)} < 0$$
(12)

所以 V_s−V_i 恒小于零,表明依靠调整圆环内节点的数据采 集速率无法避免传感器网络局部产生能量空洞的问题,但是 由式(12)可知,当圆环 C_k(k≥i)内节点数据采集率确定时,减 小 b_k 可以缓解传感器网络局部产生能量空洞的问题。 3.3.3 多跳方式

定理5 多跳路由方式是否能够缓解传感器网络局部产 生能量空洞的问题,取决于圆环 C_n 到圆环 C_{n-1} 的平均跳数 可知,在初始工作条件下圆环 C: 越靠近 Sink 节点,其对应的 能耗速率 V: 就越大,所以 C: 内的节点将最早耗尽能量,在局 部产生能量空洞现象。

表1 E_i/E₁值的变化趋势

TY 12	最大环数 n=10		最大环数 n=20		最大环数 n=30	
坏效n	下限	上限	下限	上限	下限	上限
1	1	1	1	1	1	1
2	0.320	0.333	0, 330	0, 333	0.332	0, 333
3	0.182	0.194	0.195	0.198	0.198	0.199
4	0.120	0.131	0.137	0.140	0,140	0.142
5	0.083	0.094	0.104	0.107	0.108	0,109

3.3.1 节点密度

定理2 无论如何调整圆环内节点密度,最外环能耗速 率总是小于内环的能耗速率,也就是说传感器网络局部产生 能量空洞的问题无法通过调整各圆环的节点密度来避免。

证明:假设网络的初始工作条件(1)改变为各圆环的节点 密度 ρ_i 可以任意调整,即圆环内的节点数目 N_i 可以控制,其 他条件不变,此时:

$$V_{i} = E_{i} = b \frac{(n^{2} - i^{2} + 2i - 1)(\beta_{1} + \beta_{2}r_{1}^{a}) + (n^{2} - i^{2})\beta_{3}}{(2i - 1)}$$

$$V_{n} = E_{n} = b(\beta_{1} + \beta_{2}r_{1}^{a})$$
(8)

(9)

传感器网络局部产生能量空洞的问题,但是当圆环 C₄(*k*≥*i*) 内节点数据采集率确定时,减小 b₄ 可以缓解传感器网络局部 产生能量空洞的问题。

证明:假设网络初始条件(2)改为各圆环内节点数据采集 速率可控,同一圆环 C_i内的节点数据采集速率相同,为 b_i,不 同圆环内节点的数据采集速率不同,其它条件不变。根据文 中的能量空洞分析模型,以及圆环 C_i的能耗速率 V_i可得:

(11)

d_n 与圆环C_i 到圆环C_{i-1}的平均跳数 d_i 之间的大小关系。当前者较大后者较小时,多跳路由方式能缓解传感器网络局部 产生能量空洞的问题;当两者相差不大甚至前者小于后者时, 多跳路由方式反而会加剧传感器网络局部产生能量空洞的问题,多跳路由方式无法避免传感器网络局部产生能量空洞的问题。

证明:假设网络初始工作条件(3)改为圆环 C_i和圆环 C_{i-1}的节点之间采用多跳传输方式,d_i为节点从圆环 C_i到圆 环C_{i-1}的平均跳数,其它条件不变。由于圆环 C_i和圆环 C_{i-1} 的节点之间采用多跳传输方式,根据文中的能量空洞分析模 型可得:

• 68 •

$$E_{itotal} = d_i [\rho_i \pi b(r_n^2 - r_{i-1}^2)(\beta_1 + \beta_2 r_1^a) + \rho_i \pi b(r_n^2 - r_i^2)\beta_3]$$

= $d_i [\rho_i \pi b r_1^2 (n^2 - i^2 + 2i - 1)(\beta_1 + \beta_2 r_1^a) + \rho_i \pi b r_1^2 (n^2 - i^2)\beta_3]$ (13)

$$E_{i} = \frac{E_{iotal}}{\rho_{i} \pi (r_{i}^{2} - r_{i-1}^{2})}$$
$$= \frac{d_{i} \left[\rho_{i} \pi b r_{1}^{2} (n^{2} - i^{2} + 2)\right]}{\rho_{i} \pi b r_{1}^{2} (n^{2} - i^{2} + 2)}$$

$$\begin{split} \rho_{i}\pi(r_{i}-r_{i-1}) &= \frac{d_{i}\left[\rho_{i}\pi br_{1}^{2}\left(n^{2}-i^{2}+2i-1\right)\left(\beta_{i}+\beta_{i}r_{1}^{2}\right)+\rho_{i}\pi br_{1}^{2}\left(n^{2}-i^{2}\right)\beta_{i}\right]}{\rho_{i}\pi r_{1}^{2}(2i-1)} & \text{BfU}: \\ V_{n}-V_{i} &= b\left[d_{n}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)-\frac{d_{i}\left(n^{2}-i^{2}+2i-1\right)\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)+\left(n^{2}-i^{2}\right)\beta_{i}}{(2i-1)}\right] \\ &= b\left[d_{n}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)-d_{i}\frac{\left(n^{2}-i^{2}+2i-1\right)\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)+\left(n^{2}-i^{2}\right)\beta_{i}}{(2i-1)}\right] \\ &= b\left[d_{n}\frac{\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)}{(2i-1)}-d_{i}\frac{\left(n^{2}-i^{2}+2i-1\right)\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)+\left(n^{2}-i^{2}\right)\beta_{i}}{(2i-1)}\right] \\ &= b\left[d_{n}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)-d_{i}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)-d_{i}\left(\beta_{3}+\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(n^{2}-i^{2}\right)\right] \\ &= \frac{b\left[d_{n}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)-d_{i}\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)-d_{i}\left(\beta_{3}+\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(n^{2}-i^{2}\right)\right]}{(2i-1)}\right] \\ &= \frac{b\left[\left(\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(2i-1\right)\left(d_{n}-d_{i}\right)-d_{i}\left(\beta_{3}+\beta_{1}+\beta_{2}r_{1}^{2}\right)\left(n^{2}-i^{2}\right)\right]}{(2i-1)}\right]}{(2i-1)} \end{split}$$

由式(16)可以看出,多跳路由方式是否能够缓解传感器 网络局部产生能量空洞的问题,取决于圆环 C_n 到圆环 C_{n-1} 的平均跳数 d_n 与圆环 C_i 到圆环 C_{i-1} 的平均跳数 d_i 之间的 大小关系。当前者较大后者较小时,多跳路由方式能缓解传 感器网络局部产生能量空洞的问题;当两者相差不大甚至前 者小于后者时,多跳路由方式反而会加剧传感器网络局部产 生能量空洞的问题。

4 基于蚁群算法的能量空洞避免策略

4.1 算法的核心思想

现有算法虽然能够均衡网络的能量消耗,有效地延长网 络寿命,但是都只是从均衡能量的角度出发来延缓能量空洞 的出现,所以本文提出了一种基于蚁群算法的传感器网络局 部能量空洞规避策略。算法的核心思想是:通过在蚁群算法 的下一跳节点选择过程中引人能量空洞规避策略,使得数据 传输路径可以规避能量空洞,从而最大限度地延长网络生命 周期。

4.2 路由建立

给定网络 *G*=(*V*,*S*,*E*),其中*V* 为传感器节点集,*S* 为源 节点集且 *S*∩*V*= Φ,*E* 为边集,假设所有的边都是双向的。 对于任何节点 $v \in (S \cup V)$ 有一个最大传输距离 t_x ,用 *R*(v_i , v_j)表示节点 v_i 和 v_j 的距离,如果 *R*(v_i , v_j)≪ t_x ,则存在一条 边 $e(v_i, v_j) \in E$ 。

4.2.1 下一跳节点的选择

首先,sink 节点会向所有节点发送一个广播报文,该报文 中记录了跳数、能量值;其次当前节点收到报文后,它会计算 自己到达 sink 节点的跳数,本文用跳数来衡量各个节点与 sink 节点之间的距离,若一个源节点想要发送数据,它就会按 照一定的概率来选择下一跳节点,这个概率与节点到 sink 的 跳数和节点的剩余能量有关。根据节点到 sink 的跳数和节 点的剩余能量计算当前节点到所有可能的邻节点之间的投 重,再根据式(17)计算当前节点到每个邻节点之间的选路概 率,本文将此问题抽象为基于最小费用流的组合规划问题,计 算公式如下:

$$P(v_{i}, v_{k}) = \max(P(v_{i}, v_{j}))$$

$$= \max((1-\eta) \frac{\tau(v_{i}, v_{j}) \times d(v_{i}, v_{j})^{\gamma}}{\sum\limits_{v_{u} \in N_{v_{i}}} \tau(v_{i}, v_{u}) \times d(v_{i}, v_{u})^{\gamma}} + \eta \frac{E_{v_{j}}}{\sum\limits_{v_{u} \in N_{v_{i}}} E_{v_{u}}})$$

$$(17)$$

$$= d_i b \frac{(n^2 - i^2 + 2i - 1)(\beta_1 + \beta_2 r_1^2) + (n^2 - i^2)\beta_3}{2i - 1}$$
(14)

式中,
$$i \in [1, n-1]$$
,由式(14)得:
 $V_i = E_i = d_i b \frac{(n^2 - i^2 + 2i - 1)(\beta_1 + \beta_2 r_1^2) + (n^2 - i^2)\beta_3}{(2i - 1)}$
(15)

(16)

即节点 vi 根据最大的概率 P(vi, vi)选择下一跳的节点 vi。 其中各个字符的意义如下:

P(v_i, v_j)是蚂蚁 k 将报文从节点 v_i 传递到节点 v_j 的概 率,即节点 v_i 选择下一跳节点的概率;

η是权值常数是 0<η<1,反映节点剩余能量在概率选择 中所占比重的大小;

 $\tau(v_i, v_j)$ 是节点 v_i 到节点 v_j 路径上的 pheromone 素浓度;

d(*v_i*,*v_j*)是节点 *v_i* 经过节点 *v_j* 到达 sink 节点的跳数的 倒数;

Nv; 是节点 vi 的所有邻居节点;

γ是参数,反映延时相对重要程度的参数;

Ev, 是节点 v, 的剩余能量;

Ev, 是节点 vu 的剩余能量;

下一跳节点采用上述方式时,会综合考虑跳数、能量因 素,这样能量小的节点被选择成为下一跳节点的概率会大大 减小,从而保证算法能量消耗的均衡性。

4.2.2 信息素浓度更新

1)局部信息素更新规则

当某个蚂蚁经过链路(v_i,v_j)时,链路(v_i,v_j)上的信息素 强度根据式(18)更新:

 $\tau(v_i, v_j) = (1 - \rho)\tau(v_i, v_j) + \varphi \Delta \tau_d(v_i, v_j)$ (18)

式中, ρ 为 pheromone 素挥发因子, $\varphi(根据对 QoS 的具体要求 程度而定)为修正系数,<math>\Delta \tau_d(v_i, v_j)$ 为信息素的变化量,计算 公式如下:

$$\begin{cases} \Delta \tau_{d}(v_{i}, v_{j}) = [1 + (d_{v_{i}} - d_{v_{j}})] \times \Delta w_{v_{j}} \times (E_{v_{j}} / \sum_{v_{u} \in N_{v_{i}}} E_{v_{u}}) \\ \Delta w_{v_{j}} = \sum_{v_{u} \in R_{v_{j}}} (H_{v_{u}}, v_{j})^{-1} + (d_{v_{j}})^{-1} \end{cases}$$
(10)

式中, Δw_{v_j} 为节点 v_j 将其收到的数据经该路径发送到 sink 节点的总代价, d_{v_i} 为节点 v_i 到达 sink 节点的跳数, d_{v_j} 为节点 v_j 到达 sink 节点跳数, R_{v_j} 为所有经过节点 v_j 的源节点的集 合, N_{v_i} 为节点 v_i 的所有邻居节点, H_{v_u,v_j} 为上述源节点各自 到达节点 v_j 的跳数的总和, E_{v_j} 为节点 v_j 的剩余能量, E_{v_u} 为 节点 v_u 的剩余能量。

由式(19)可知, d_{v_i} 和 d_{v_j} 决定了 $\Delta \tau_d(v_i, v_j)$ 的值。如果, $d_{v_i} - d_{v_j} > 0$,那么节点 v_j 到 sink 节点距离较近,如果 v_j 的剩 余能量较多, $E_{v_j} / \sum_{v_u \in N_{v_i}} E_{v_u}$ 即较大,那么在路径 v_i 到 v_j 上放 置的 pheromone 素的浓度也比较大;如果 $d_{v_i} - d_{v_j} < 0$,其值 为-1,那么在这条路径上不再增加 pheromone 素;如果 $d_{v_i} - d_{v_j} = 0$,则增加值为 $\Delta w_{v_j} \times (E_{v_j} / \sum_{v_u \in N_u} E_{v_u})$ 。

2)全局信息素更新规则

当算法搜索到一条路径 p时,由 sink 发送后向蚂蚁 (backward ant)对该路径上的节点进行全局信息素更新,更 新规则为:

$$\tau(v_{i}, v_{j}) = \begin{cases} (1-\rho)\tau(v_{i}, v_{j}) + \varphi \Delta \tau_{d}(v_{i}, v_{j}), (v_{i}, v_{j}) \in p \\ (1-\rho)\tau(v_{i}, v_{j}), (v_{i}, v_{j}) \notin p \end{cases}$$
(20)

 $\Delta \tau_d(v_i, v_j) = 1/H_p$

式中, ρ 为 pheromone 素挥发因子, φ 为调整参数, $\Delta \tau_d (v_i, v_j)$ 为路径 p 信息素的变化量,H,是路径 p 的跳数。全局信息素更新式(20)的目的是为具有较小路径跳数的路径分配较强的信息素。

4.3 能量空洞规避策略

本文采用 Bejerano^[20] 的空洞探测算法来实现对能量空 洞边缘节点位置的确定,因为该空洞探测方法在不依赖于地 理位置信息的前提条件下,在相对坐标系中,实现了空洞边缘 的确定,同时该方法还实现了 k 覆盖空洞的确定。假设网络 已经通过 Bejerano 的空洞探测算法确定了能量空洞的边缘节 点(2、3、4、5、6),能量消耗殆尽节点 1,其拓扑结构如图 2 所 示。

图 2 能量空洞规避策略图

为了能够规避传感器网络运行一段时间后在局部区域产 生的能量空洞,本文引入了能量空洞规避策略,并使用半径 L 限制备用节点的选择范围,减少了备用节点过多而造成的额 外能量消耗。假设节点的部署服从均匀分布,L的计算公式 见式(22),λ为密度,m为每跳期望参与的备用节点数。同 时,L还应小于节点的通信半径 t_x。

$$L = \sqrt{\frac{m}{\pi\lambda}}$$
(22)

如图 2 所示,节点 9 发送下一跳节点选择消息 N_MSG (Next_message)后,边缘节点 4 在通过 CTS 应答节点 9 的同 时,发送转发消息 TS_MSG(Transmit_message)到它的邻居 节点,请求其邻居节点代替其作为节点 9 的下一跳节点,侦听 到节点 4 的 TS_MSG 消息后,竞争节点通过其位置坐标计算 出节点 4 与自己的距离,小于 L 的节点,如 7、8 便成为节点 4 的备用代替节点,备用代替节点根据接收到的 TS_MSG 信号 的强弱以及自身的剩余能量 $E_{aurrent}$ 来确定是否代替节点 4 成 为节点 9 的下一跳节点。假设胜出的是节点 7,节点 7 将完 成下一跳的数据转发工作。在节点 7 接收失败的情况下,由 节点 4 的其它备用代替节点 8 来成为下一跳节点。没有收到 数据的节点7不会发送 ACK,而备用代替节点8在限定时间 内如果没有收到节点7的 ACK(Acknowdgement),便开始以 "回退竞争"的方式发送 F_ACK(Failure acknowledge),请求 替代节点7成为节点9的下一跳节点。为了避免冲突,节点 在回退的同时侦听信道,一旦有新的备用代替节点胜出,其它 备用代替节点便放弃发送自己的 ACK。假设胜出的是节点 8,它将会完成下一跳的转发任务。对于节点9,如果在限定 时间内没有收到 ACK 或者 F_ACK,便开始重新选择下一跳 节点。

4.4 算法详细描述

(21)

我们假设系统中每个节点都执行同样的路由选择算法。 当某个源节点 s 受到一个数据的连接请求时,该源节点成为 连接请求的源节点。为了描述方便,我们假设连接请求的目 的节点为 sink。首先使用初始化的信息素值(包括节点到达 sink 节点的跳数、节点的能量值、能量空洞节点边界节点的坐 标值)初始化网络中每个节点的信息素表,此后按照下面的步 骤实现该算法。

第1步 我们选取 m 只蚂蚁分组,并将每个蚂蚁分组按 顺序排列。设置并初始化蚂蚁初始的信息素浓度。我们将在 源节点 s 周期性地发送蚂蚁分组,不防假设时间周期为 Δt。 首先,在源节点的信息素表中选择具有最大概率的邻居节点 作为蚂蚁的下一跳节点。

第2步 根据 Bejerano 的空洞探测算法所确定的能量空 洞边界节点的坐标来判断所选下一跳节点是否为能量空洞边 界节点。如果是能量空洞边界节点,则根据能量空洞规避策 略来选择能量空洞边界节点的协作节点来代替该节点;如果 不是能量空洞边界节点,则跳到第3步。

第3步 设第 k 只蚂蚁到达了某个节点 u。如果 u 不是 目的节点 sink,则比较节点 u 的信息素表来选择下一节点 v。 如果 u 是目的节点 sink,顺序提取蚂蚁分组的信息素值,可以 得到蚂蚁所经过的路径的最优传输序列 s→,…,u→…(sin k),利用全局更新式(20)更新路径上的每一条链路的信息素 强度,并按照每个节点的信息素表中的最大概率值从源节点 到 sink 节点为连接请求建立链接,同时将链路上的信息素强 度值,以及式(17)刷新网络中每个节点信息素表,用于下一个 连接请求,算法结束。

第4步 如果 v属于已经选择的最优序列节点集,则蚂 蚁返回到前一节点,同时通过局部更新式(18)设置 $\Delta \tau_d(v_i, v_j)=0$ 来刷新链路 (v_i, v_j) 上新的信息素强度(信息素挥发操 作),转到第2步。否则,进行下一步。

第5步 以节点v作为当前节点转到第2步,重复以上 过程。

第6步 考察 k 是否等于 m, 如果 k≥m, 算法结束。表明网络不能满足连接请求, 拒绝连接请求。否则, 选择在源节 点释放第 k+1 只蚂蚁, 重复以上步骤。

5 实验仿真

我们对本文提出的基于蚁群算法的局部能量空洞规避策 略和 AASTRL 算法进行了模拟,并比较了两种算法在网络生 存周期、网络能量剩余率、平均时延等方面的性能。表 2 中是 模拟实验使用的基本参数。每个传感器节点每秒钟产生和发 送 6 个单位数据,即产生和发送数据量大小为 6000 bits,传感

• 70 •

器节点的最大传输距离为 2m,其传输距离可根据实际情况调 节,节点分布密度为每平方米 5 个节点。采用 NS2 模拟仿真 环境,实验硬件环境为 2.9GHz 处理器,2GB 内存,操作系统 平台是 Windows 2003 Server。

......

表 2 头粒参数					
参数					
节点初始能量E	100J				
单位数据长度	1000 比特				
网络半径	20~30				
α	4				
γ	. 4				
∆t	0.1s				
β_1	45×10 ⁻⁹ J/bit				
β2	10 ⁻¹⁵ J/bit				
β3	135×10 ⁻⁹ J/bit				

5.1 网络生命周期和能量剩余率

图 3 是网络在两种不同算法下的网络能量剩余率,文中 的能量剩余率是指在网络生命周期结束后,网络中剩余的总 能量与网络中所有节点的初始能量总和之比值,从图 3 中可 以看出本文提出的算法在能量消耗上要小于 AASTRL 算法, 并且 AASTRL 算法的能量剩余率在仿真时间到达 700s 的时 候保持不变,说明 AASTRL 算法的网络生命周期为 700s 左 右,而本文通过引入能量空洞规避策略,充分利用了网络中的 能量,算法的网络生命周期在 AASTRL 的基础上延长了近 28%。

图 3 能量剩余率和仿真时间的关系

图 4 示出两种算法在网络生命周期方面的比较以及网络 生命周期随网络半径的变化趋势。由图 4 可以看出随着网络 半径的增大,两种不同算法的网络生命周期都呈递减趋势,但 是本文提出的算法由于引入了能量空洞规避策略,算法的网 络生命周期总体高于 AASTRL 算法。

图 4 网络生命周期和网络半径的关系

5.2 平均时延

图 5 显示了两种算法在延迟方面的比较结果,从图中可 以看出随着网络半径的增大,两种不同算法的网络平均时延 都呈递增趋势。由于本文算法引入了能量空洞规避策略,在 寻找最佳数据传输序列的过程中需要规避能量空洞,而 AASTRL协议直接寻找最佳数据传输序列,因此本文算法在 总体上的延迟略高于 AASTRL 算法,但相差不大。

5.3 数据包丢失率

本文也研究了数据包丢失率和网络半径的关系。从图 6 可以看出,随着网络半径的增加,数据包的丢失率呈上升趋势,原因是随着传输距离和传输跳数的增加,数据包的丢失可 能性增大。同时,也可以看出本文算法和 AASTRL 算法的丢 包率基本相同。

图 6 数据包丢失率和网络半径的关系

结束语 现有算法虽然能够均衡网络的能量消耗,有效 地延长网络寿命,但是都只是从均衡能量的角度出发来延缓 能量空洞的出现。在缓解传感器网络局部能量空洞有效性分 析的基础上,本文提出了一种基于蚁群算法的传感器网络局 部能量空洞规避策略,通过蚁群算法的自适应性实现了无线 传感器网络运行过程中对局部区域能量空洞的规避,搜索出 一条最优路径来最大限度地延长网络的生命周期。本文下一 步的工作是对文中算法的 QoS 保证做进一步的研究。

参考文献

- [1] Olariu S, Stojmenovic I. Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting[C]//Domingo-Pascual J, ed. Proc. of the IEEE INFOCOM. New York: IEEE Communications Society, 2006: 1-12
- [2] Ee C T, Bajcsy R. Congestion control and fairness for many-toone routing in sensor networks[C]//Proc of the 2nd ACM Conf on Embedded Networked Sensor Systems (SenSys). Baltimore, MD, USA, November 2004
- [3] Matrouk K, Landfeldt B. RETT-gen; a globally efficient routing protocol for wireless sensor networks by equalizing sensor energy and avoiding energy holes[J]. Ad-hoc Networks, 2009(7): 514-536
- [4] Wu X B, Chen G, Das S K. Avoiding energy holes in wireless sensor networks with non-uniform node distribution[J]. IEEE Transactions on Parallel and Distributed Systems, 2007, 19(5): 710-720
- [5] Lian J, Naik K, Agnew G. Data capacity improvement of wireless sensor networks using non-uniform sensor distribution[J]. Int'l Journal of Distributed Sensor Networks, 2006, 2(2):121-145

(下转第118页)

参考文献

- [1] Agrawal D, Aggarwal C C. On the design and quantification of privacy preserving data mining algorithms [C]// Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2001;247-255
- [2] Ahmadi H, Pham N, Ganti R, et al. Privacy-aware regression modeling of participatory sensing data [C]//Procee-dings of the 8th ACM Conference on Embedded Networked Sensor Systems, 2010;99-112
- [3] Sweeney L. K-anonymity: a model for protecting privacy [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570
- [4] Mokbel M F, Chow C Y, Aref W G. The new casper:query processing for location services without compromising privacy[C]// Proceedings of the 32nd International Conference on Very Large Data Bases. 2006:763-774
- [5] Gruteser M, Grunwald D. Anonymous usage of location- based services through spatial and temporal cloaking [C] // Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, 2003;31-42
- [6] Kalnis P, Ghinita G, Mouratidis K, et al. Preventing locationbased identity inference in anonymous spatial queries [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (12):1719-1733
- [7] Butz A R. Alternative algorithm for hilbert's space- filling curve [J]. IEEE Transactions on Computers, 1971, C-2(4): 424-426
- [8] Gedik B, Liu L. Location privacy in mobile systems: a personalized anonymization model [C] // Proceedings of 25th IEEE International Conference on Distributed Computing Systems.

(上接第71页)

- [6] Kumar S, Lai T H, Balogh J. On k-coverage in a mostly sleeping sensor network [C] // Proceedings of the 10th Annual International Conference on Mobile Computing and Nerworking. Philadelphia, PA, USA, 2004:144-158
- [7] Meguerdichian S, Koushanfar F, Potkonjak M, et al. Coverage problems in wireless Ad-hoc sensor networks[C]// Proceedings of the IEEE Conference on Computer Communications. Anchorage, Alaska, 2001:1380-1387
- [8] Fang Q, Gao J, Guibas L. Locating and bypassing routing holes in sensor networks[C]//Proceedings of the IEEE Conference on Computer Communications. Hong Kong, China, 2004: 2458-2468
- [9] Wang G, Cao G, La Porta T. Movement-assisted sensor deployment[C] // Proceedings of the IEEE Conference on Computer Communications, Hong Kong, China, 2004:2469-2479
- [10] So Man Cho A, Ye Y. On solving coverage problems in a wireless sensor network using voronoi diagrams[C]//Proceedings of the International Workshop on Internet and Network Economics (WINE). LNCS 3828. Hong Kong, China, 2005, 584-593
- [11] Rao A, Ratnasamy S, Papadimitriou C, et al. Geographic routing without location information[C]//Proceedings of the 9th Annual International Conference on Mobile Computing and Networking. San Diego, CA, USA, 2003; 96-108
- [12] Lederer S, Wang Y, Gao J. Connectivity-based localization of large scale sensor networks with complex shape [C] // Proceedings of the IEEE Conference on Computer Communications.

2005:620-629

- [9] Cheng R,Zhang Y,Bertino E, et al. Preserving user location privacy in mobile data management infrastructures [J]. Privacy Enhancing Technologies, 2006, 4258: 393-412
- [10] Khoshgozaran A, Shahabi C. Blind evaluation of nearest neighbor queries using space transformation to preserve location privacy [J]. Advances in Spatial and Temporal Databases, 2007, 4605:239-257
- [11] Hoh B, Gruteser M. Protecting location privacy through path confusion [C] // First International Conference on Security and Privacy for Emerging Areas in Communications Networks. 2005:194-205
- [12] Ghinita G, Kalnis P, Khoshgozaran A, et al. Private queries in location based services; anonymizers are not necessary [C] // SIGMOD. 2008;121-132
- [13] Khoshgozaran A, Shahabi C, Shirani-Mehr H. Location privacy: going beyond k-anonymity, cloaking and anonymizers [J]. Knowledge and Information Systems, 2011, 26(3):435-465
- [14] Ghinita G, Kalnis P, Kantarcioglu M, et al. Approximate and exacthybrid algorithms for private nearest-neighbor queries with database protection [J]. GeoInformatica, 2011, 15(4):699-726
- [15] Mouratidis K, Yiu M L. Anonymous query processing in road networks [J]. IEEE Transaction on Knowledge and Data Engineering, 2010, 22(1): 2-15
- [16] Chow C Y, Mokbel M F, Liu X. Query-aware location anonymization for road networks [J]. GeoInformatica, 2011, 15(3); 571-607
- [17] Datar M, Indyk P. Locality-sensitive hashing scheme based on pstable distributions [C]// Proceedings of the Twentieth Annual Symposium on Computational Geometry. 2004:253-262

Phoenix AZ, USA, 2008, 789-797

- [13] Li X, Hunter D K, Yang K. Distributed coordinate-free hole detection & recovery[C]//Proceeding of the IEEE GlobeCom. San -Francisco, USA, 2006; 1-5
- [14] Ashraf H, Radhika T, Chakrabarti S, et al. Approach to increase the lifetime of a linear array of wireless sensor nodes[J]. Wireless Information Networks, 2008(15):72-81
- [15] Zeng Z W, Chen Z G, Liu A F. Energy-hole avoidance for WSN based on adjust transmission power[J]. Chinese journal of computers, 2010(33):12-22
- [16] Chen Z G, Liu A F, Yang G J. Energy hole avoid by alternately working with different cluster-radius for wireless sensor networks[J]. Journal on Communications, 2010(31): 1-8
- [17] Jarry A, Leone P, Powell O, et al. An optimal data propagation algorithm for maximizing the lifespan of sensor networks[C]// Gibbons P, ed. Proc. of the Distributed Computing in Sensor Systems(DCOSS). Berlin, Heidelberg: Spring-Verlag, 2006: 405-421
- [18] 宋超,刘明,龚海刚,等. 基于蚁群优化解决传感器网络中的能量 洞问题[J]. 软件学报,2008,5(5);8-11
- [19] Lian J, Naik K, Agnew G. Data capacity improvement of wireless sensor networks using non-uniform sensor distribution [J]. International Journal of Distributed Sensor Networks, 2006, 2(2): 121-145
- [20] BejeranoY. Simple and efficient k-coverage verification without location information[C]//Proceeding of the IEEE Conference on Computer Communications. Phoenix A Z, USA, 2008; 291-295

• 118 •