1974年1月创刊(月刊)
主管/主办:重庆西南信息有限公司
ISSN 1002-137X
CN 50-1075/TP
CODEN JKIEBK
编辑中心
    CRSSC-CWI-CGrC-3WD 2017 栏目所有文章列表
    (按年度、期号倒序)
        一年内发表的文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    1. 一种多强度攻击下的对抗逃避攻击集成学习算法
    刘晓琴,王婕婷,钱宇华,王笑月
    计算机科学    2018, 45 (1): 34-38.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.005
    摘要 (231)   PDF (5110KB) (318)  
    在对抗性学习中,攻击者在非法目的的驱使下,通过探索分类器的漏洞并利用漏洞,使得恶意样本逃过分类器的检测。目前,对抗性学习已被广泛应用于计算机网络中的入侵检测、垃圾邮件过滤和生物识别等领域。现有研究者仅把现有的集成方法应用在对抗性分类中,并证明了多分类器比单分类器更鲁棒。然而,在对抗性学习中,攻击者的先验信息对分类器的鲁棒性有较大的影响。基于此,通过在学习过程中模拟不同强度的攻击,并增大错分样本的权重,提出的 多强度攻击下的对抗逃避攻击集成学习算法 可以在保持多分类器准确性的同时提高鲁棒性。将其与Bagging集成的多分类器进行比较,结果表明所提算法 具有更强的鲁棒性。最后,分析了算法的收敛性以及参数对算法的影响。
    参考文献 | 相关文章 | 多维度评价
    2. 基于Lasso算法的中文情感混合特征选择方法研究
    李燕,卫志华,徐凯
    计算机科学    2018, 45 (1): 39-46.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.006
    摘要 (151)   PDF (6865KB) (383)  
    中文情感分析中的一个重要问题就是情感倾向分类,情感特征选择是基于机器学习的情感倾向分类的前提和基础,其作用在于通过剔除无关或冗余的特征来降低特征集的维数。提出一种将Lasso算法与过滤式特征选择方法相结合的情感混合特征选择方法:先利用Lasso惩罚回归算法对原始特征集合进行筛选,得出冗余度较低的情感分类特征子集;再对特征子集引入CHI,MI,IG等过滤方法来评价候选特征词与文本类别的依赖性权重,并据此剔除候选特征词中相关性较低的特征词;最终,在使用高斯核函数的SVM分类器上对比所提方法与DF,MI,IG和CHI在不同特征词数量下的分类效果。在微博短文本语料库上进行了实验,结果表明所提算法具有有效性和高效性;并且在特征子集维数小于样本数量时,提出的混合方法相比DF,MI,IG和CHI的特征选择效果都有一定程度的改善;通过对比识别率和查全率可以发现,Lasso-MI方法相比MI以及其他过滤方法更为有效。
    参考文献 | 相关文章 | 多维度评价
    3. 专家权重完全未知的区间直觉不确定语言多属性群决策方法
    庞继芳,宋鹏
    计算机科学    2018, 45 (1): 47-54.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.007
    摘要 (138)   PDF (1103KB) (244)  
    针对专家权重信息完全未知且属性值为区间直觉不确定语言数的模糊多属性群决策问题,提出一种基于混合权重信息及决策者风险态度的群决策分析方法。在定义区间直觉不确定语言数差异度的基础上,分别利用专家在方案评价值上的贴近度以及方案排序上的一致度来计算两类专家权重,并基于均衡度得到专家的客观综合权重。进而通过融合专家客观综合权重以及基于相似度的个体综合评价值权重,提出一种混合加权集结方法,从而得到方案的群体综合评价值,并通过定义带有风险态度因子的期望值与精确函数实现对方案的比较和排序。最后,通过实例分析证明所提方法的有效性和合理性。
    参考文献 | 相关文章 | 多维度评价
    4. 基于Nystrm采样和凸NMF的偏好聚类
    杨美姣,刘惊雷
    计算机科学    2018, 45 (1): 55-61.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.008
    摘要 (111)   PDF (7023KB) (355)  
    大规模的稀疏图数据在现实中大量出现,例如协同图、拉普拉斯矩阵等。非负矩阵分解(NMF)已经成为数据挖掘、信息检索和信号处理的一个非常重要的工具。随着数据量的不断增大,如何实现大规模数据的偏好聚类是一个重要的问题。采用两阶段的方法来实现大规模的偏好聚类,即首先利用Nystrm的近似采样方法,从大数据上获得数据的初始轮廓,获得部分用户-用户相似矩阵或电影-电影相似矩阵,从而可以将原始的高维空间降低到一个低维子空间;然后通过对低维相似矩阵进行凸的非负矩阵分解,从而得到聚类的中心和指示器,聚类的中心表示电影或用户的特征,指示器表示用户或电影特征的权重。该两阶段偏好聚类方法的优点是,初始数据轮廓的近似获取以及凸的非负矩阵分解,使得该方法具有较好的鲁棒性和抗噪性;另外,子空间的数据来源于真实的矩阵行列数据,使得偏好聚类结果具有良好的可解释性。采用Nystrm方法解决了大规模的数据无法在内存中存储的问题,从而大大节省了内存,提高了运行效率。最后在含有100000条电影的数据集上进行偏好聚类,结果表明了该聚类算法的有效性。
    参考文献 | 相关文章 | 多维度评价
    5. 基于动态邻域的三支聚类分析
    王平心,刘强,杨习贝,米据生
    计算机科学    2018, 45 (1): 62-66.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.009
    摘要 (168)   PDF (4799KB) (396)  
    目前,大多数聚类方法是二支聚类,即对象要么属于一个类,要么不属于一个类,聚类的结果必须具有清晰的边界。然而,将某些不确定的对象强制分配到某个类中将降低聚类结果的结构和精度。三支聚类是一种重叠聚类,它采用核心域和边界域来表示每个类别,较好地处理了具有不确定性对象的聚类问题。提出了一种使用样本邻域将二支聚类转化为三支聚类的方法。该方法利用二支聚类的结果和每个类中元素的邻域是否完全包含在该类中来对集合进行收缩,同时利用不在该类中的元素的邻域是否与该类有交集来进行扩张。收缩的区域称为核心域,扩张域和核心域的差集称为边界域。在UCI数据集上的实验结果显示,该方法在提高聚类结果的结构和F1值方面有较好的效果。
    参考文献 | 相关文章 | 多维度评价
    6. 结合词向量和Bootstrapping的领域实体上下位关系获取与组织
    马晓军,郭剑毅,线岩团,毛存礼,严馨,余正涛
    计算机科学    2018, 45 (1): 67-72.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.010
    摘要 (159)   PDF (1289KB) (386)  
    实体上下位关系是构建领域知识图谱不可或缺的一种重要的语义关系,传统抽取上下位关系的方法大多不考虑关系的组织。提出一种结合词向量和Bootstrapping的方法来实现领域实体上下位关系的获取与组织。首先,选取旅游领域的种子语料集;然后,采用基于词向量的相似度计算方法对种子集中包含的上下位关系模式进行聚类,筛选出置信度高的模式并对未标注语料进行上下位关系识别,得到候选关系实例,同时选择置信度高的关系实例加入到种子集中,进行下一轮的迭代,直到得到所有的关系实例;最后,根据领域实体上下位关系对的向量偏移并结合领域实体层级关系的特点,采用映射的学习方法进行领域实体层级关系组织。实验结果表明,与传统的方法相比,所提方法的F值提高了近10%。
    参考文献 | 相关文章 | 多维度评价
    7. 基于单边区间集概念格的不完备形式背景的属性约简
    王振,魏玲
    计算机科学    2018, 45 (1): 73-78.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.011
    摘要 (113)   PDF (2084KB) (283)  
    单边区间集概念的提出为不完备形式背景的数据分析奠定了理论基础,也为研究其属性约简提供了思路。首先给出了不完备形式背景上的4种约简,即保持单边区间集概念格结构不变的约简、保持并(交)不可约元外延不变的约简与保持对象单边区间集概念外延不变的约简,并研究了它们的关系,最后给出了基于差别矩阵与差别函数计算约简的方法。
    参考文献 | 相关文章 | 多维度评价
    被引次数: Baidu(1)
    8. 串行概率粗糙集近似
    马建敏,姚红娟,潘笑晨
    计算机科学    2018, 45 (1): 79-83.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.012
    摘要 (100)   PDF (949KB) (309)  
    经典的概率粗糙集模型是基于等价关系和条件概率提出的。但在实际应用中,知识库存在多种不确定性因素,使得对象间的关系未必满足等价关系。因此在保证条件概率有意义的情况下,将等价关系推广到串行二元关系,讨论了串行关系下的概率粗糙集近似;研究了当目标概念发生变化时,串行概率粗糙下、上近似的性质;进一步,通过调整两个阈值,给出了对应的串行概率粗糙下、上近似的变化趋势。
    参考文献 | 相关文章 | 多维度评价
    被引次数: Baidu(1)
    9. 概念格中基于粗糙熵的属性约简方法
    李美争,李磊军,米据生,解滨
    计算机科学    2018, 45 (1): 84-89.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.013
    摘要 (100)   PDF (1082KB) (318)  
    属性约简是概念格理论的研究重点内容之一。通过将粗糙熵引入概念格理论中,定义了一种粗糙熵约简。首先,基于所有概念外延定义了形式背景的粗糙熵,并分析了它的性质;其次,定义了形式背景的粗糙熵约简,并揭示了粗糙熵约简与概念格约简之间的关系;在此基础上,基于属性重要度设计了计算粗糙熵的启发式算法,并通过实验验证了该算法的有效性。
    参考文献 | 相关文章 | 多维度评价
    10. 基于协同过滤的三支粒推荐算法研究
    叶晓庆,刘盾,梁德翠
    计算机科学    2018, 45 (1): 90-96.   https://doi.org/10.11896/j.issn.1002-137X.2018.01.014
    摘要 (114)   PDF (3340KB) (340)  
    为了降低传统协同过滤算法的推荐成本,并解决该算法评分信息单一的问题,提出了一种基于协同过滤的三支粒推荐算法。该算法在传统协同过滤的基础上,考虑项目特征对用户评分的影响,根据项目特征、粒化用户项目评分矩阵,形成用户对项目粒度的评分矩阵,并以此作为用户偏好的测度依据。同时,该算法在推荐过程中引入三支决策,考虑了推荐过程中产生的误分类成本和学习成本,并基于用户真实的评分偏好构建三支推荐。实验结果显示,基于协同过滤的三支粒推荐算法与传统协同过滤算法相比,不但提高了算法的推荐质量,而且降低了推荐成本。
    参考文献 | 相关文章 | 多维度评价
    首页 | 前页| 后页 | 尾页 第1页 共2页 共16条记录