Computer Science ›› 2015, Vol. 42 ›› Issue (6): 233-238.doi: 10.11896/j.issn.1002-137X.2015.06.049

Previous Articles     Next Articles

Fault Diagnosis of High-speed Rail Based on Clustering Ensemble

CHEN Yun-feng, WANG Hong-jun and YANG Yan   

  • Online:2018-11-14 Published:2018-11-14

Abstract: Clustering ensemble is the combination of some independent cluster’s results,so as to get an optimal clustering result to the original data.Clustering ensemble can reduce the influence of noise and outlier on the clustering result,and at the same time it can also improve the robustness and stability of the clustering results.This paper divided three aspects to describe the fault diagnosis of high-speed rail analysis based on clustering ensemble.In the first aspect,we switched the original simulation data from time domain to frequency domain through discrete Fourier transform,and used different feature selection algorithms for data preprocessing.In the second aspect,we used AP,FCM,EmGauussian and Kmeans,four different clustering algorithms,to analyze it.In the last aspect,we used HGPA,MCLA and CSPA,three different Cluster Ensemble models,to integration the results of clustering algorithms.This paper applied clustering ensemble algorithm in fault diagnosis of high-speed rail for the first time.The experimental results show that this method has better performance than a single clustering algorithm,and can be more accurate and effective for fault diagnosis of high-speed rail.

Key words: Fault diagnosis,Feature selection,Cluster analysis,Clustering ensemble

[1] 赵晶晶,杨燕,李天瑞,等.基于近似熵及 EMD 的高铁故障诊断[J].计算机科学,2014,41(1):91-94 Zhao Jing-jing,Yang Yan,Li Tian-rui,et al.Fault Diagnosis of High-Speed Rail Based on Approximate Entropy and Empirical Mode Decomposition[J].Computer Science,2014,41(1):91-94
[2] 常伟刚,孙跃.基于贝叶斯网络的 CPT 故障诊断专家系统[EB/OL]. Chang Wei-gang,Sun Yue.Fault Diagnosis Expert system of CPT Based on Bayesian Network[EB/OL].
[3] 秦娜,王开云,金炜东,等.高速列车转向架故障的经验模态熵特征分析[J].交通运输工程学报,2014,14(1):58-73 Qin Na,Wang Kai-yun,Jin Wei-dong,et al.Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J].Journal of Traffic and Transportation Engineering,2014,14(1):58-73
[4] Gini C.Variabilità e mutabilità[M].Reprinted in Memorie di metodologica statistica,Pizetti E,Salvemini T,eds.Rome:Libreria Eredi Virgilio Veschi,1912
[5] Veklerov E,Llacer J.Stopping rule for the MLE algorithmbased on statistical hypothesis testing[J].IEEE Transactions on Medical Imaging,1987,6(4):313-319
[6] Breslow N.A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship[J].Biometrika,1970,57(3):579-594
[7] Gu Q,Li Z,Han J.Generalized fisher score for feature selection[J].arXiv preprint arXiv:1202.3725,2012
[8] Hartigan J A,Wong M A.Algorithm AS 136:A k-means clustering algorithm[J].Applied statistics,1979,28(1):100-108
[9] Klawonn F,Kruse R,Runkler T.Fuzzy cluster analysis:me-thods for classification,data analysis and image recognition[M].New York:John Wiley,1999
[10] Frey B J,Dueck D.Clustering by passing messages between data points[J].science,2007,315(5814):972-976
[11] Bilmes J A.A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[J].International Computer Science Institute,1998,4(510):126
[12] Han E H,Karypis G,Kumar V,et al.Clustering based on association rule hypergraphs[M].University of Minnesota,Department of Computer Science,1997
[13] Strehl A,Ghosh J.Cluster ensembles--a knowledge reuseframework for combining multiple partitions[J].Journal of Machine Learning Research,2002(12):583-617
[14] 马继涌,高文.基于最大交叉熵估计高斯混合模型参数的方法[J].软件学报,1999,0(9):974-978 Ma Ji-yong,Gao Wen.An Approach for Estimating Parameters in Gaussian Mixture Model Based on Maximum Cross Entropy[J].Journal of Software,1999,0(9):974-978
[15] 洪飞,吴志美.基于小波的Hurst指数自适应估计方法[J].软件学报,2005,6(9):1685-1689 Hong Fei,Wu Zhi-mei.Adaptive Hurst Index Estimator Based on Wavelet[J].Journal of Software,2005,6(9):1685-1689
[16] 商琳,王金根,姚望舒,等.一种基于多进化神经网络的分类方法[J].软件学报,2005,6(9):1577-1583 Shang Lin,Wang Jin-gen,Yao Wang-shu,et al.A Classification Approach Based on Evolutionary Neural Networks[J].Journal of Software,2005,6(9):1577-1583
[17] Dy J G,Brodley C E.Feature subset selection and order identification for unsupervised learning[C]∥ICML.2000:247-254
[18] Bamber D.The area above the ordinal dominance graph and the area below the receiver operating characteristic graph[J].Journal of mathematical psychology,1975,12(4):387-415
[19] 阳琳赟,周海京,卓晴,等.基于属性重要性的加权聚类融合[J].计算机科学,2009,36(4):243-245 Yang Lin-yun,Zhou Hai-jing,Zhuo Qing,et al.Weighted Cluster Ensemble Based on Significance of Attribute[J].Computer Science,2009,36(4):243-245
[20] Asur S,Parthasarathy S,Ucar D.An ensemble approach forclustering scale-free graphs[C]∥Proc.of ACM KDD.2006
[21] Li T,Ding C,Jordan M I.Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization[C]∥Seventh IEEE International Conference on Data Mining,2007(ICDM 2007).IEEE,2007:577-582
[22] Topchy A P,Jain A K,Punch W F.A Mixture Model for Clustering Ensembles[C]∥SDM.2004
[23] Berikov V.Weighted ensemble of algorithms for complex data clustering[J].Pattern Recognition Letters,2014,38:99-106
[24] Minaei-Bidgoli B,Parvin H,Alinejad-Rokny H,et al.Effects of resampling method and adaptation on clustering ensemble efficacy[J].Artificial Intelligence Review,2014,41(1):27-48
[25] 王红军,李志蜀,成飏,等.基于隐含变量的聚类集成模型[J].软件学报,2009,20(4):825-833 Wang Hong-jun,Li Zhi-shu,Cheng Yang,et al.A Latent Variable Model for Cluster Ensemble[J].Journal of Software,2009,20(4):825-833
[26] Zhou Z H,Tang W.Clusterer ensemble.Knowledge-Based Systems,2006,9(1):77-83

No related articles found!
Full text



No Suggested Reading articles found!