Computer Science ›› 2016, Vol. 43 ›› Issue (3): 220-224, 230.doi: 10.11896/j.issn.1002-137X.2016.03.040

Previous Articles     Next Articles

HMSST+:HMSST Algorithm Optimization Based on Distributed Memory Database

DONG Shu-jian, WANG Jing-bin and CHEN Yuan   

  • Online:2018-12-01 Published:2018-12-01

Abstract: To solve the bottleneck of HMSST(HashMapSelectivityStrategyTree) algorithm which is limited to the memory in a centralized environment,this paper proposed a novel distributed SPARQL optimized query algorithm named HMSST+.This algorithm presents a distributed storage solution based on the Redis(Remote Dictionary Ser-ver),and realizes the query of massive RDF data in the memory of distributed cluster by a parallel expansion of storage nodes and distributed scheduling .The method was tested on LUBM Benchmark and it worked well when the number of universities reaches 1000.The result shows that the method has better scalability than the HMSST algorithm and higher query efficiency than the existing query schemes.

Key words: RDF,Redis,Distributed storage,Memory database,SPARQL

[1] He Shao-peng,Li Jian-hui,Shen Zhi-hong,et al.Overview of the Storage Technology for Large-scale RDF Data[J].Network New Media,2013(1):8-16(in Chinese) 何少鹏,黎建辉,沈志宏,等.大规模的RDF数据存储技术综述[J].网络新媒体技术,2013(1):8-16
[2] Harris S,Lamb N,Ltd N S G.4store:The Design and Imple-mentation of a Clustered RDF Store [C]∥The 5th International Workshop on Scalable Semantic Web Knowledge Base Systems.2009
[3] Neumann T,Weikum G.The RDF-3X engine for scalable mana-gement of RDF data[J].The VLDB Journal,2010,9:91-113
[4] Wang Yan,Tian Cui-hua,Zhu Shun-zhi,et al.RDF Data Index Method Based on Association of SPARQL Query Twis[J].Journal of Xiamen University(Natural Science),2014,3(3):322-329(in Chinese) 王琰,田翠华,朱顺痣,等.基于SPARQL查询小枝关联的RDF数据索引方案[J].厦门大学学报(自然科学版),2014,3(3):322-329
[5] Weiss C,Karras P,Bemstein A.Hexastore:sextuple indexingfor semantic web data anagementl [C]∥Proceedings of the 34rd International Conference on Very Large Data Bases.New York:ACM,2008:1008-1019
[6] Dong Shu-jian,Wang Jing-bin.HMSST:An efficient algorithm for SPARQL query[J].Computer Science,2014,1(S2):323-326,336(in Chinese) 董书暕,汪璟玢.HMSST:一种高效的SPARQL查询优化算法[J].计算机科学,2014,1(S2):323-326,336
[7] Zeng Chao-yu,Li Jin-xiang.Redis application in cache system[J].Microcomputer&Its Applications,2013,2:11-13(in Chinese) 曾超宇,李金香.Redis在高速缓存系统中的应用[J].微型机与应用,2013,2:11-13
[8] Gao X,Fang X.High-Performance Distributed Cache Architecture Based on Redis[C]∥Proceedings of the 9th International Symposium on Linear Drives for Industry Applications,Volume 1.Springer Berlin Heidelberg,2014:105-111
[9] Guo Y,Pan Z,Heflin J.LUBM:A benchmark for OWL know-ledge base systems[J].Web Semantics:Science,Services and Agents on the World Wide Web,2005,3(2):158-182
[10] Huang H,Liu C.Selectivity estimation for SPARQL graph pattern[C]∥Proceedings of the 19th international conference on World Wide Web.ACM,2010:1115-1116
[11] Liu L,Yin J,Gao L.Efficient Social Network Data Query Processing on MapReduce[C]∥Proc of the 5th ACM workshop.New York:ACM,2013:27-32
[12] Kim H S,Ravindra P,Anyanwu K.From SPARQL to MapReduce:The journey using a nested TripleGroup algebra[J].Proc.of the VLDB Endowment,2011,4(12):1426-1429

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75, 88 .
[2] XIA Qing-xun and ZHUANG Yi. Remote Attestation Mechanism Based on Locality Principle[J]. Computer Science, 2018, 45(4): 148 -151, 162 .
[3] LI Bai-shen, LI Ling-zhi, SUN Yong and ZHU Yan-qin. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree[J]. Computer Science, 2018, 45(4): 157 -162 .
[4] WANG Huan, ZHANG Yun-feng and ZHANG Yan. Rapid Decision Method for Repairing Sequence Based on CFDs[J]. Computer Science, 2018, 45(3): 311 -316 .
[5] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[6] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[7] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[8] LIU Qin. Study on Data Quality Based on Constraint in Computer Forensics[J]. Computer Science, 2018, 45(4): 169 -172 .
[9] ZHONG Fei and YANG Bin. License Plate Detection Based on Principal Component Analysis Network[J]. Computer Science, 2018, 45(3): 268 -273 .
[10] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99, 116 .