Computer Science ›› 2016, Vol. 43 ›› Issue (7): 294-296.doi: 10.11896/j.issn.1002-137X.2016.07.054

Previous Articles     Next Articles

Video Denoising Method Based on Improved Dual-domain Image Denoising

QUAN Li, HU Yue-li, ZHU An-ji and YAN Ming   

  • Online:2018-12-01 Published:2018-12-01

Abstract: Image denoising continues to be an active research topic.Recently the proposed BM3D is based on block matching,which introduces visible artifacts in homogeneous regions,manifesting as low-frequency noise.This paper offered a hybrid method that is easy to implement and yet rivals BM3D in quality.The noise differentials were estimated using robust kernels in two spatial domains,one spatial range domain and one frequency range domain.The approach using robust estimators unifies spatial and wavelet domain methods.Video denoising based on temporal is highly effective,and the method is further demonstrated particularly to be suitable for video denoising.Comparing to the DCT,the value of PSNR of the proposed method is improved by about 1dB.

Key words: Dual-domain image denoising,Bilateral filtering,Wavelet shrinkage,Short-time fourier transform

[1] Buades A,Coll B,Morel J M.A review of image denoising methods,with a new one[J].Multiscale Model.Simul.,2005,4(2):490-530
[2] Kervrann C,Boulanger J.Optimal spatial adaptation for patchbased image denoising[J].IEEE Trans.Image Process.,2006,15(10):2866-2878
[3] Dabov K,Foi A,Katkovnik V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Trans.Image Process.,2007,16(8):2080-2095
[4] Dabov K,Foi A,Katkovnik V,et al.A nonlocal and shape-adaptive transform-domain collaborative filtering[C]∥Proc.2008 Int.Workshop on Local and Non-Local Approximation in Image Processing(LNLA 2008).2008
[5] Dabov K,Foi R,Katkovnik V,et al.BM3D Image Denoisingwith Shape-Adaptive Principal Component Analysis[C]∥Proc.Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS’09).2009
[6] Lebrun M.An Analysis and Implementation of the BM3D Image Denoising Method[J].American Society of Mechanical Engineer,2012,2(25):175-213
[7] Chatterjee P,Milanfar P.Is denoising dead?[J].IEEE Transactions on Image Processing, 2010,19(4):895-911
[8] Levin A,Nadler B.Natural image denoising:Optimality and inherent bounds[C]∥CVPR.2011:2833-2840
[9] Levin A,Nadler B,Durand F,et al.Patch complexity,finite pixel correlations and optimal denoising[M]∥ Computer Vision-ECCV 2012.Springer,2012:73-86
[10] Knaus C,Zwicker M.Dual-domain image denoising[C]∥Proceedings of the IEEE International Conference on Image Processing.IEEE,2013
[11] Petschnigg G,Szeliski R,Agrawala M,et al.Digital photography with flash and no-flash image pairs[J].ACM Trans.Graph.ACM,2004,23:664-672
[12] Yu H,Zhao L,Wang H.Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain[J].IEEE Trans.on Image Process.,2009,18(10):2364-2369
[13] Knaus C,Zwicker M.Progressive Image Denoising[J].IEEETransactions on Image Processing,2014,23(7):3114-3125
[14] Foi A,Katkovnik V,Egiazarian K.Pointwise Shape-AdaptiveDCT for High-Quality Denoising and Deblocking of Grayscale and Color Images[J].IEEE Transactions on Image Processing,2007,16(5):1-17
[15] Sikora T.Low complexity shape-adaptive DCT for coding of arbitrarily shped image segments[J].Signal Process.Image Comm.,1995,7(4-6):381-395
[16] Bi M,Ong S H,Ang Y H.Comment on Shape-Adaptive DCT for generic coding of video[J].IEEE Trans.Circurts Syst.Video Technol.,1996,6:686-688
[17] Zoran D,Weiss Y.From Learning Models of Natural Image Patches to Whole Image Restoration[C]∥2011 International Conference on Computer Vision.IEEE,2011:479-486
[18] Zhang Pei,Fan Hong,Hao Yan-rong.Research on MR Image Seg-mentation Based on Fast FCM Algorithm Combined with Non-local Means[J].Computer Science,2014,41(5):305-307(in Chinese) 张翡,范虹,郝艳荣.结合非局部均值的快速FCM算法分割MR图像研究[J].计算机科学,2014,1(5):305-307

No related articles found!
Full text



No Suggested Reading articles found!