Computer Science ›› 2016, Vol. 43 ›› Issue (Z11): 56-58.doi: 10.11896/j.issn.1002-137X.2016.11A.012

Previous Articles     Next Articles

Method on Human Activity Recognition Based on Convolutional Neural Networks

WANG Zhong-min, CAO Hong-jiang and FAN Lin   

  • Online:2018-12-01 Published:2018-12-01

Abstract: In order to improve the accuracy of human activity recognition based on intelligent terminal,we proposed a recognition method based on convolution neural network.We pre-process the raw acceleration data,and input the processed data directly into the convolution neural network to do local feature analysis.After processing,we got the characteristic output items,which can be directly inputted into the Softmax classifier,which can recognize five activity,such as walking,running,going downstairs,going upstairs and standing.By comparing the experimental results,the recognition rate of different experimenters is 84.8%,which proved that the method is effective.

Key words: Human activity recognition,Deep learning,Convolutional neural networks

[1] Zeng M,Nguyen L T,et al.Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors[C]∥Moboi SCASE.2014:197-205
[2] Abdel-Hamid O,Mohamed A R,Jiang H,et al.Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2012:4277-4280
[3] Bagci U,Bai L.A comparison of daubechies and gabor wavelets for classification of mr images[C]∥IEEE International Confe-rence on Signal Processing and Communications,2007(ICSPC 2007).IEEE,2007:676-679
[4] Bengio Y.Learning deep architectures for ai[J].Foundationsand trends R in Machine Learning,2009,2(1):1-127
[5] Bhattacharya S,Nurmi P,Hammerla N,et al.Using unlabeled¨data in a sparse-coding framework for human activity recognition[J].arXiv preprint arXiv:1312.6995,2013
[6] 王喜昌,杨先军,徐强,等.基于三维加速度传感器的上肢动作识别系统[J].传感器学报,2010,6(23):816-819
[7] 王忠民,曹栋.基于蚁群算法的行为识别特征优选方法[J].西安邮电大学学报,2014,9(1):73-77
[8] 衡霞,王忠民.基于手机加速度传感器的人体行为识别[J].西安邮电大学学报,2014,9(6):76-79
[9] 徐姗姗.卷积神经网络的研究与应用[D].南京:南京林业大学,2013
[10] 陈先昌.基于卷积神经网络的深度学习算法和应用研究[D].杭州:浙江工商大学,2013
[11] 范琳,王忠民.穿戴位置无关的手机用户行为识别模型[J].计算机应用研究,2015,32(1):63-66
[12] 陈先昌.基于卷积神经网络的深度学习算法与应用研究[D].杭州:浙江工商大学,2014
[13] 杨心.基于卷积神经网络的交通标识识别研究与应用[D].大连:大连理工大学,2014
[14] 陆璐.卷积神经网络的研究及其在车牌识别系统中的应用[D].合肥:合肥工业大学,2006
[15] 赵志宏,杨绍普,马增强.基于卷积神经网络LeNet-5的车牌字符识别研究[J].系统仿真学报,2010(3):638-641

No related articles found!
Full text



No Suggested Reading articles found!