Computer Science ›› 2017, Vol. 44 ›› Issue (6): 57-62.doi: 10.11896/j.issn.1002-137X.2017.06.009

Previous Articles     Next Articles

Efficient Mechanism of Hybrid Memory Placement and Erasure Code

WU Yang, FU Yin-jin, CHEN Wei-wei and NI Gui-qiang   

  • Online:2018-11-13 Published:2018-11-13

Abstract: With the rapid development of big data and multi-core technology,the growth of traditional memory techno-logy,as a matter of fact,has been far away from satisfying the memory computing needs along with the emergence of a large number of data intensive applications.In recent years,the emergence and development of non-volatile memory (NVM) obviously provides an opportunity to break the bottleneck of traditional memory technology.As a typical emerging non-volatile memory,phase change memory (PCM) and traditional DRAM memory have their own advantages.What’s more,it is widely considered to be most likely to replace traditional DRAM memory and has very good develo-pment prospects in the memory applications.Hybrid memory based on DRAM and PCM makes it possible to play the respective advantages of DRAM and PCM simultaneously.Therefore,in this paper,a hybrid memory architecture of DRAM and PCM was proposed,which is designed to evidently improve the system reliability of the hybrid memory system by using erasure code,based on the efficient reading,writing strategy and data migration mechanism.Experiments firmly show that the hybrid memory system can greatly reduce energy consumption,obviously improve the throughput,and ensure the reliability of reading and writing.

Key words: Hybrid memory,DRAM,PCM,Erasure codes,Reading and writing strategy

[1] LI X.Efficient page replacement algorithm based on hybridmemory[D].Jinan:Shangdong University,2015.(in Chinese) 李骁.基于混合架构的高效页面替换算法的分析[D].济南:山东大学,2015.
[2] MAO W,LIU J N,TONG W,et al.A Review of Storage Technology Research Based on Phase Change Memory[J].Chinese Journal of Computers,2015,8(5):944-960.(in Chinese) 冒伟,刘景宁,童薇,等.基于相变存储器的存储技术研究综述[J].计算机学报,2015,8(5):944-960.
[3] QURESHI M K,SRINIVASAN V,RIVERS J A.Scalable high performance main memory system using phase-change memory technology[J].ACM SIGARCH Computer Architecture News,2009,7(3):24-33.
[4] CHEN J,WINTER Z,VENKATARAMANI G,et al.rPRAM:Exploring redundancy techniques to improve lifetime of PCM-based main memory[C]∥Proc of the Parallel Architectures and Compilation Techniques(PACT) International Conference.Galveston TX,2011:201-202.
[5] KONG J,ZHOU H.Improving privacy and lifetime of PCM-based main memory[C]∥Proc of the IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).Chicago,2010:333-342.
[6] CHHABRA S,SOLIHIN Y.i-NVMM:A secure non-volatile ma-in memory system with incremental encryption[C]∥Proc of the 38th Annual International Symposium on Computer Architecture(ISCA).San Jose,2011:177-188.
[7] KWON S,KIM D,KIM Y,et al.A case study on the application of real phase-change RAM to main memory subsystem[C]∥Proc of the Conference on Design,Automation and Test in Europe.San Jose,2012:264-267.
[8] WANG Q,CHEN L,HAO X R.Efficient Management withHotspots Control for Hybrid Memory System[J].Microelectronics & C omputer,2014,1(1):1-4.(in Chinese) 王强,陈岚,郝晓冉.一种混合内存系统访存热点控制方法[J].微电子学与计算机,2014,1(1):1-4.
[9] ZHANG W,LI T.Exploring phase change memory and 3D die-stacking for power/thermal friendly,fast and durable memory architectures[C]∥Proc of the 18th International Conference on Parallel Architectures and Compilation Techniques.Raleigh,2009:101-112.
[10] RAMOS L E,GORBATOV E,BIANCHINI R.Page placement in hybrid memory systems[C]∥Proc of the International Conference on Supercomputing.New York,2011:85-95.
[11] QURESHI M K,FRANCESCHINI M M,L ASTRAS-MONTANO L A,et al.Morphable memory system:A robust architecture for exploiting multi-level phase change memories[C]∥Proc of the 37th Annual International Symposium on Computer Architecture.New York,2010:153-162.
[12] PARK H,YOO S,LEE S.Power management of hybrid DRAM/PRAM-based main memory[C]∥Proc of the 48th Design Automation Conference.New York,2011:59-64.
[13] MLADENOV R.An efficient non-volatile main memory using phase change memory[C]∥Proc of the 13th International Conference on Computer Systems and Technologies.New York,2012:45-51.
[14] LUO X H,SHU J W.Summary of Research for Erasure Code in Storage System[J].Journal of Computer Research and Development,2012,9(1):1-11.(in Chinese) 罗象宏,舒继武.存储系统中的纠删码研究综述[J].计算机研究与发展,2012,9(1):1-11.
[15] REED I S,SOLOMON G.Polynomial codes over certain finitefields[J].Journal of the Society for Industrial and Applied Mathematics,1960,8(2):300-304.
[16] BLAUM M,BRADY J,BRUCK J,et al.EVENODD:An efficient scheme for tolerating double disk failures in RAID architectures[J].IEEE Trans on Computer,1995,4(2):192-202.
[17] CORBETT P,ENGLISH B,GOEL A,et al.Row-diagonal re-dundant for double disk failure correction[C]∥Proc of the 3rd USENIX Conf on File and Storage Technologies.Berkeley,CA:USENIX Association,2004:2-15.
[18] XU L,BRUCK J.X-code:MDS array codes with optimal encoding[J].IEEE Trans on Information Theory,1999,5(1):272-276.
[19] JIN C,JIANG H,FENG D,et al.P-code:A new RAID-6 code with optimal properties[C]∥Proc of the 23rd Int Conf on Supercomputing.New York:ACM,2009:360-369.
[20] PATTERSON V,GIBSON V, KATZ R.A case for redundant arrays of inexpensive disks(RAID)[C]∥Proc of the ACM SIGMOD International Conference on Management of Data.1988:109-116.

No related articles found!
Full text



[1] LEI Li-hui and WANG Jing. Parallelization of LTL Model Checking Based on Possibility Measure[J]. Computer Science, 2018, 45(4): 71 -75 .
[2] SUN Qi, JIN Yan, HE Kun and XU Ling-xuan. Hybrid Evolutionary Algorithm for Solving Mixed Capacitated General Routing Problem[J]. Computer Science, 2018, 45(4): 76 -82 .
[3] ZHANG Jia-nan and XIAO Ming-yu. Approximation Algorithm for Weighted Mixed Domination Problem[J]. Computer Science, 2018, 45(4): 83 -88 .
[4] WU Jian-hui, HUANG Zhong-xiang, LI Wu, WU Jian-hui, PENG Xin and ZHANG Sheng. Robustness Optimization of Sequence Decision in Urban Road Construction[J]. Computer Science, 2018, 45(4): 89 -93 .
[5] SHI Wen-jun, WU Ji-gang and LUO Yu-chun. Fast and Efficient Scheduling Algorithms for Mobile Cloud Offloading[J]. Computer Science, 2018, 45(4): 94 -99 .
[6] ZHOU Yan-ping and YE Qiao-lin. L1-norm Distance Based Least Squares Twin Support Vector Machine[J]. Computer Science, 2018, 45(4): 100 -105 .
[7] LIU Bo-yi, TANG Xiang-yan and CHENG Jie-ren. Recognition Method for Corn Borer Based on Templates Matching in Muliple Growth Periods[J]. Computer Science, 2018, 45(4): 106 -111 .
[8] GENG Hai-jun, SHI Xin-gang, WANG Zhi-liang, YIN Xia and YIN Shao-ping. Energy-efficient Intra-domain Routing Algorithm Based on Directed Acyclic Graph[J]. Computer Science, 2018, 45(4): 112 -116 .
[9] CUI Qiong, LI Jian-hua, WANG Hong and NAN Ming-li. Resilience Analysis Model of Networked Command Information System Based on Node Repairability[J]. Computer Science, 2018, 45(4): 117 -121 .
[10] WANG Zhen-chao, HOU Huan-huan and LIAN Rui. Path Optimization Scheme for Restraining Degree of Disorder in CMT[J]. Computer Science, 2018, 45(4): 122 -125 .