Computer Science ›› 2017, Vol. 44 ›› Issue (9): 58-61.doi: 10.11896/j.issn.1002-137X.2017.09.011

Previous Articles     Next Articles

NMF-Based Clustering Ensemble Algorithm

HE Meng-jiao, YANG Yan and WANG Shu-ying   

  • Online:2018-11-13 Published:2018-11-13

Abstract: A NMF-based K-means clustering ensemble (NBKCE) algorithm was proposed for solving the problem of effective information loss in ensemble,which is caused by basic clustering results obtained from the original datasets.In NBKCE,an ensemble information matrix is built primarily by exploiting the results of the K-means,and then the relationship matrix is formed based on the original dataset.At last nonnegative matrix factorization (NMF) is employed to construct consensus function to gain the final results.The experiments demonstrate that the NBKCE may attain the underlying information effectively and improve the performance of the clustering.

Key words: Ensemble clustering,K-means,NMF,Underlying information

[1] YANG C Y,LIU D Y,YANG B,et al.The research on clustering ensemble[J].Computer Science,2011,8(2):166-170.(in Chinees) 杨草原,刘大有,杨博,等.聚类集成方法研究[J].计算机科学,2011,38(2):166-170.
[2] STREHL A,GHOSH J.Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J].Journal of Machine Learning Research,2003,3(3):583-617.
[3] WANG H J,LI Z S,CHENG Y,et al.A Latent Variable Model for Cluster Ensemble[J].Journal of Software,2009,20(4):825-833.(in Chinees) 王红军,李志蜀,成飏,等.基于隐含变量的聚类集成模型[J].软件学报,2009,20(4):825-833.
[4] ZHOU Z H.Ensemble Methods:Foundations and Algorithms[M].Taylor & Francis,2012.
[5] YANG Y,KAMEL M.An aggregated clustering approach using multi-ant colonies algorithms[J].Pattern Recognition,2006,38(7):1278-1289.
[6] LAMON N,BOONGOEN T,GARRETT S.Link-based cluster ensemble approach for categorical data clustering[J].IEEE Transactions on Knowledge and Data Engineering,2012,4(3):413-425.
[7] YANG Y,FENG C F,JIA Z,et al.A Link-Based Fuzzy Clustering Ensemble[J].Journal of University of Electronic Science and Technology of China,2014,3(6):887-892.(in Chinees) 杨燕,冯晨菲,贾真,等.基于链接的模糊聚类集成方法[J].电子科技大学学报,2014,3(6):887-892.
[8] HAN J,KAMBER M.Data Mining:Concepts and Techniques[J].Data Mining Concepts Models Methods & Algorithms Se-cond Edition,2006,5(4):1-18.
[9] DING C,HE X,SIMON H.Nonnegative lagrangian relaxationof k-means and spectral clustering[C]∥ECML.2005: 530-538.
[10] ZHANG J S,WANG C P,YANG Y Q.Learning latent features by nonnegative matrix factorization combining similarity judgments[J].Neurocomputing,2015,155:43-52.
[11] MIAO L D,QI H R.Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J].IEEE Trans.Geosci.Remote Sens.,2007,45(3):765-777.
[12] ASUNCION A,NEWMAN D J.UCI machine learning repository school of information and computer science,university of california [DB/OL].(2007-06-02).
[13] FERN X Z,BRODLEY C E.Solving cluster ensemble problems by bipartite graph partitioning[C]∥Proc.21th Int.Conf.Mach.Learn..2004:36-44.
[14] ALEXANDER T,ANIL K J,WILLIAM P.Clustering Ensem-bles:Models of Consensus and Weak Partitions[J].IEEETrans.on Pattern Analysis and Machine Intelligence,2005,27(12):1866-1881.
[15] YANG Y,JIN F,KAMEL M.Survey of clustering validity eva-luation[J].Application Research of Computer,2008,25(6):1630-1632.(in Chinese).杨燕,靳蕃,KAMEL M.聚类有效性评价综述[J].计算机应用研究,2008,25(6):1630-1632.
[16] RAND W M.Objective criteria for the evaluation of clustering methods[J].Journal of American Statistical Association, 1971,66(336):846-850.

No related articles found!
Full text



No Suggested Reading articles found!